首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
K P Sinha  S K Srivastava 《Pramana》1995,44(4):333-345
Manifestation of Ricci scalar like a matter field as well as a geometrical field, at high energy, has been noted earlier [9]. Here, its interaction with another scalar field is considered in four-dimensional curved space-time. This interaction leads to the production of a large number of pairs of spinless particle-antiparticle due to expansion of the early universe in the vacuum state (provided by temperature dependent Coleman-Weinberg like potential for Ricci field), where spontaneous symmetry breaking takes place.  相似文献   

2.
The objective of this paper is to discuss the Chameleon Brans–Dicke gravity with non-minimally matter coupling of scalar field. We take modified Holographic Ricci dark energy model in this gravity with its energy density in interaction with energy density of cold dark matter. We assume power-law ansatz for scale factor and scalar field to discuss potential as well as coupling functions in the evolving universe. These reconstructed functions are plotted versus scalar field and time for different values of power component of scale factor n. We observe that potential and coupling functions represent increasing behavior, in particular, consistent results for a specific value of n. Finally, we have examined validity of the generalized second law of thermodynamics and we have observed its validity for all values of n.  相似文献   

3.
It has been suggested that the Universe's recent acceleration is due to a contribution to the gravitational action proportional to the reciprocal of the Ricci scalar. Although the original version of this theory disagrees with solar system observations, a modified Palatini version, in which the metric and connection are treated as independent variables, has been suggested as a viable model of the cosmic acceleration. We show that this theory is equivalent to a scalar-tensor theory in which the scalar field kinetic energy term is absent from the action. Integrating out the scalar field gives rise to additional interactions among the matter fields of the standard model of particle physics at an energy scale of order 10(-3) eV (the geometric mean of the Hubble and the Planck scales), and so the theory is excluded by, for example, electron-electron scattering experiments.  相似文献   

4.
A model universe is proposed in the framework of 5D noncompact Kaluza–Klein cosmology which is not Ricci flat. The 4D part as the Robertson–Walker metric is coupled to conventional perfect fluid, and its extra-dimensional part is coupled to a dark pressure through a scalar field. It is shown that neither early inflation nor current acceleration of the 4D universe would happen if the nonvacuum states of the scalar field would contribute to 4D cosmology.  相似文献   

5.
In this work, we have considered the Ricci dark energy model, where the energy density of the universe is proportional to the Ricci scalar curvature, in the dynamic Chern–Simons modified gravity. We show that in this context the evolution of the scale factor is similar to that displayed by the modified Chaplygin gas.  相似文献   

6.
7.
We investigate the necessary condition for the existence of classical Euclidean wormholes in a conformally non-invariant gravitational model minimally coupled to an scalar field. It is shown that while the original Ricci tensor with positive eigenvalues does not allow the Euclidean wormholes to occur, under dynamical conformal transformations the Ricci tensor, with respect to the original metric, is dynamically coupled with the conformal field and its eigenvalues may become negative allowing the Euclidean wormholes to occur. Therefore, it is conjectured that dynamical conformal transformations may provide us with effective forms of matter sources leading to Euclidean wormholes in conformally non-invariant systems.  相似文献   

8.
In this paper we consider holographic dark energy model with corrected holographic energy density and show that this model may be equivalent to the modified Chaplygin gas model. Then we obtain relation between entropy corrected holographic dark energy model and scalar field models. We do these works by using choices of IR cut-off length proportional to the Hubble radius, the event horizon radius, the Ricci length, and the Granda-Oliveros length.  相似文献   

9.
Recent theoretical work determines the correct coupling constant of a scalar field to the Ricci curvature of spacetime in general relativity. The periodicity in the redshift distribution of galaxies observed by Broadhurst et al., if genuine, determines the coupling constant in the proposed scalar field models. As a result, these observations contain important information on the problem of whether general relativity is the correct theory of gravity in the region of the universe at redshifts z < 0.5.  相似文献   

10.
Similarly as in the Rainich geometrization of an electromagnetic field, the author finds a system of differential equations for the metric tensor, equivalent to the equations of the gravitational and scalar meson field, and shows how to find the wave function of the meson field if the Ricci tensor is known.  相似文献   

11.
We have studied the gravitational baryogenesis in f(R) theory of gravity with an anisotropic Bianchi I space-time. The matter field is considered to be that of perfect fluid. Two models pertaining to specific form of Ricci scalar have been presented. The baryon-to-entropy ratio has been derived with some specific form of Ricci scalar in an an anisotropic background. The gravitational baryogenesis is examined and its behaviors are studied.  相似文献   

12.
Recently, type Ia supernova data appear to support a dark energy whose equation of state w crosses −1, which is a much more amazing problem than the acceleration of the universe. We show that it is possible for the equation of state to cross the phantom divide by a scalar field in gravity with an additional inverse power-law term of the Ricci scalar in the Lagrangian. The necessary and sufficient condition for a universe in which the dark energy can cross the phantom divide is obtained. Some analytical solutions with w<−1 or w>−1 are obtained. A minimally coupled scalar with different potentials, including quadratic, cubic, quantic, exponential and logarithmic potentials are investigated via numerical methods, respectively. All these potentials lead to the crossing behavior. We show that it is a robust result which is hardly dependent on the concrete form of the potential of the scalar.  相似文献   

13.
We study the unitarity of models with low scale quantum gravity both in four dimensions and in models with a large extra-dimensional volume. We find that models with low scale quantum gravity have problems with unitarity below the scale at which gravity becomes strong. An important consequence of our work is that their first signal at the Large Hadron Collider would not be of a gravitational nature such as graviton emission or small black holes, but rather would be linked to the mechanism which fixes the unitarity problem. We also study models with scalar fields with non-minimal couplings to the Ricci scalar. We consider the strength of gravity in these models and study the consequences for inflation models with non-minimally coupled scalar fields. We show that a single scalar field with a large non-minimal coupling can lower the Planck mass in the TeV region. In that model, it is possible to lower the scale at which gravity becomes strong down to 14 TeV without violating unitarity below that scale.  相似文献   

14.
Starting from the most general scalar-tensor theory with second-order field equations in four dimensions, we establish the unique action that will allow for the existence of a consistent self-tuning mechanism on Friedmann-Lema?tre-Robertson-Walker backgrounds, and show how it can be understood as a combination of just four base Lagrangians with an intriguing geometric structure dependent on the Ricci scalar, the Einstein tensor, the double dual of the Riemann tensor, and the Gauss-Bonnet combination. Spacetime curvature can be screened from the net cosmological constant at any given moment because we allow the scalar field to break Poincaré invariance on the self-tuning vacua, thereby evading the Weinberg no-go theorem. We show how the four arbitrary functions of the scalar field combine in an elegant way opening up the possibility of obtaining nontrivial cosmological solutions.  相似文献   

15.
The Einstein field equation, coupled to the scalar field, is studied in a spherically symmetric comoving system. The problem is translated into the language of the Newman Penrose formalism that is based on the choice of a null tetrad frame. The corresponding (tabulated) Einstein field equation, Bianchi identities and scalar field equation are explicited in terms of the Weyl and Ricci scalars and discussed. Spherical symmetry reduces the difficulties but not so far to enable to integrate the scheme in general. The main result is that static self-gravitation is possible only for massless scalar field. The static solution is determined. It depends on an arbitrary function that can be interpreted as radial coordinate. The part of the space–time solution of the problem does not contain black holes. It is remarked that in the part of the space–time not solution of the problem, light rays cannot propagate radially but admit circular orbits.  相似文献   

16.
Motivated by possible relation between Born–Infeld type nonlinear electrodynamics and an effective low-energy action of open string theory, asymptotically Reissner–Nordström black holes whose electric field is described by a nonlinear electrodynamics (NLED) are studied. We take into account a four dimensional topological static black hole ansatz and solve the field equations, exactly, in terms of the NLED as a matter field. The main goal of this paper is investigation of thermodynamic properties of the obtained black holes. Moreover, we calculate the heat capacity and find that the nonlinearity affects the minimum size of stable black holes. We also use Legendre-invariant metric proposed by Quevedo to obtain scalar curvature divergences. We find that the singularities of the Ricci scalar in Geometrothermodynamics (GTD) method take place at the Davies points.  相似文献   

17.
Statefinder diagnostic is a useful method which can differ one dark energy model from each others. In this Letter, we apply this method to a holographic dark energy model from Ricci scalar curvature, called the Ricci dark energy model (RDE). We plot the evolutionary trajectories of this model in the statefinder parameter-planes, and it is found that the parameter of this model plays a significant role from the statefinder viewpoint. In a very special case, the statefinder diagnostic fails to discriminate LCDM and RDE models, thus we apply a new diagnostic called the Om diagnostic proposed recently to this model in this case in Appendix A and it works well.  相似文献   

18.
The study of the energy localization in f(R)theories of gravity has attracted much interest in recent years.In this paper,the vacuum solutions of the modified field equations for a power model of plane symmetric metric are studied in metric f(R)gravity with the assumption of constant Ricci scalar.Next,we determine the energy-momentum complexes in f(R)theories of gravity for this spacetime for some important models.We also show that these models satisfy the stability and constant curvature conditions.  相似文献   

19.
Basic properties of the Einstein equations modified by a cosmological Λ-term dependent on the Ricci scalar R are considered. We show that in addition to a nonzero divergence of the energy-momentum tensor of the matter and the consequent cold matter mass nonconservation as the Universe expands, this model suggests a significant modification of the equations for the gravitational potential and particle acceleration in the Newtonian approximation. These circumstances allow the necessary criteria for possible functional dependences Λ(R) to be formulated. Nevertheless, by introducing a variable Λ-term, we can look at the problems of dark matter and dark energy anew. In particular, we show that the model in which the cosmological term depends linearly on the Ricci scalar (this corresponds to the approximation of a more complex dependence in the case of low matter densities) makes it possible to satisfactorily describe the rotation curves of galaxies without invoking the dark matter hypothesis and to construct a cosmological model with a variable vacuum energy density, in qualitative agreement with the present views of the early Universe.  相似文献   

20.
The study of the energy localization in f(R) theories of gravity has attracted much interest in recent years. In this paper, the vacuum solutions of the modified field equations for a power model of plane symmetric metric are studied in metric f(R) gravity with the assumption of constant Ricci scalar. Next, we determine the energy-momentum complexes in f(R) theories of gravity for this spacetime for some important models. We also show that these models satisfy the stability and constant curvature conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号