首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aligned ZnO nanowires were grown by metal organic chemical vapor deposition on patterned silicon substrate. The shape of nanostructures was greatly influenced by the micropatterned surface. The aspect ratio, packing fraction and the number density of nanowires on top surface are around 10, 0.8 and 107 per mm2, respectively, whereas the values are 20, 0.3 and 5×107 per mm2, respectively, towards the bottom of the cavity. XRD patterns suggest that the nanostructures have good crystallinity. High-resolution transmission electron microscopy confirmed the single-crystalline growth of the ZnO nanowires along the [0 0 0 1] direction. Photosensitivity of the nanowires, grown on both top and bottom surface of the microchannel, was observed. However, the nanowires grown on bottom surface have shown better UV response with base line recovery at dark condition.  相似文献   

2.
The polar and non-polar ZnO thin films were fabricated on cubic MgO (1 1 1) and (0 0 1) substrates by plasma-assisted molecular beam epitaxy. Based on X-ray diffraction analysis, the ZnO thin films grown on MgO (1 1 1) and (1 0 0) substrates exhibit the polar c-plane and non-polar m-plane orientation, respectively. Comparing with the c-plane ZnO film, the non-polar m-plane ZnO film shows cross-hatched stripes-like morphology, lower surface roughness and slower growth rate. However, low-temperature photoluminescence measurement indicates the m-plane ZnO film has a stronger 3.31 eV emission, which is considered to be related to stacking faults. Meanwhile, stronger band tails absorbance of the m-plane ZnO film is observed in optical absorption spectrum.  相似文献   

3.
A simple growth technique capable of growing a variety of zinc oxide (ZnO) nanostructures with record growth rates of 25 μm/s is demonstrated. Visible lengths of ZnO nanowires, nanotubes, comb-like and pencil-like nanostructures could be grown by employing a focused CO2 laser-assisted heating of a sintered ZnO rod in ambient air, in few seconds. For the first time, the growth process of nanowires was videographed, in-situ, on an optical microscope. It showed that ZnO was evaporated and presumably decomposed into Zn and oxygen by laser heating, reforming ZnO nanostructures at places with suitable growth temperatures. Analysis on the representative nanowires shows a rectangular cross-section, with a [0 0 0 1] growth direction. With CO2 laser heating replacing furnace heating used conventionally, and using different reactants and forming gases, this method could be easily adopted for other semiconducting inorganic nanostructures in addition to ZnO.  相似文献   

4.
The morphology and luminescence properties of ZnO nanowires synthesized using NiO catalyst in a chemical vapor deposition system under different growth ambient have been studied. ZnO nanostructures were prepared in nitrogen, ammonia and hydrogen ambient and characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy and photoluminescence. Growth in nitrogen ambient yields ZnO nanoneedles while growth with ammonia and hydrogen ambient ends up with ZnO nanowires. Presence of the Ni tip at the end in either morphology indicated the involvement of vapor–liquid–solid growth mechanism. Enhanced green emission in ZnO nanowires implies the presence of a high density of oxygen vacancies. Influence of the ambient gases on the morphology and optical properties of ZnO nanostructures is discussed.  相似文献   

5.
Using Zn nanowires as a self-sacrificed template, hierarchical tubes constructed by zinc oxide (ZnO) nanoflakes and ZnO nanotubes have been successfully fabricated by two different thermal-oxidation modes. The products were characterized by the X-ray powder diffraction, transmission electron microscopy and field-emission scanning electron microscopy. The experimental results show that the formation processes of ZnO nanostructures are sensitive to the growth temperature, which is lower or higher the melting point of Zn (419 °C). ZnO nanoflake tubes and ZnO nanotubes can be controlled through the variation of the heat-treatment process of Zn nanowires and their growth pathway can be described by two types of growth mechanism, in terms of Kirkendall effect and the sublimation of the Zn cores, respectively. Our method provides an easy and convenient way to prepare metal oxides tubular nanostructures with different morphologies through self-sacrificed template method via adjusting the heat-treatment process.  相似文献   

6.
ZnO epitaxial layers with treated low-temperature (LT) ZnO buffer layers were grown by plasma-assisted molecular beam epitaxy (PA-MBE) on p-type Si (1 0 0) substrates. The LT-ZnO buffer layers were treated by thermal annealing in O2 plasma with various radio frequency (RF) power ranging from 100 to 300 W before the ZnO epilayers growth. Atomic force microscopy (AFM), high-resolution X-ray diffraction (HR-XRD), and room-temperature (RT) photoluminescence (PL) were carried out to investigate their structural and optical properties. The surface roughness measured by AFM was improved from 2.71 to 0.59 nm. The full-width at half-maximum (FWHM) of the rocking curve observed for ZnO (0 0 2) XRD and photoluminescence of the ZnO epilayers was decreased from 0.24° to 0.18° and from 232 to 133 meV, respectively. The intensity of the XRD rocking curve and the PL emission peak were increased. The XRD intensity ratio of the ZnO (0 0 2) to Si substrates and PL intensity ratio of the near-band edge emissions (NBEE) to the deep-level emissions (DLE) as a function of the RF power was increased from 0.166 to 0.467 and from 2.54 to 4.01, respectively. These results imply that the structural and optical properties of ZnO epilayers were improved by the treatment process.  相似文献   

7.
We propose a new growth scheme of digitally alloyed modulated precursor flow epitaxial growth (DA-MPEG) using metalorganic and hydride precursors for the growth of AlxGa1−xN layers with high-Al content at relatively low temperatures. The growth of high-quality, high-Al content AlxGa1−xN layers (xAl>50%) that are composed of AlN and AlyGa1−yN monolayers on AlN/sapphire template/substrates by DA-MPEG was demonstrated. The overall composition of the ternary AlxGa1−xN material by DA-MPEG can be controlled continuously by adjusting the Column III mole fraction of the atomic AlyGa1−yN sub-layer. X-ray diffraction and optical transmittance results show that the AlGaN materials have good crystalline quality. The surface morphology of DA-MPEG AlGaN samples measured by atomic force microscopy are comparable to high-temperature-grown AlGaN and are free from surface features such as nano-pits.  相似文献   

8.
Vertically well-aligned ZnO nanorods were fabricated in-situ and ex-situ on ZnO homo-buffer layers using catalyst-free metal-organic chemical vapor deposition. Field-emission electron microscopy measurements demonstrated that the nanorods were well aligned and had a uniform diameter of 70–100 nm depending on the growth temperature, irrespective of growth conditions, in-situ and ex-situ. X-ray diffraction measurements demonstrated that the ZnO nanorods and the ZnO buffer layers had a wurtzite structure, and that the crystal quality of the nanorods grown on a smooth surface was better than that of the nanorods grown on a rough surface. Field-emission transmission electron microscopy measurements revealed the presence of a disordered layer at the interface of the nanorod and the buffer layer.  相似文献   

9.
Undoped and Zn-doped GaN nanowires were synthesized by chemical vapor deposition (CVD), and the effects of substrates, catalysts and precursors were studied. A high density of GaN nanowires was obtained. The diameter of GaN nanowires ranged from 20 nm to several hundreds of nm, and their length was about several tens of μm. The growth mechanism of GaN nanowires was discussed using a vapor–liquid–solid (VLS) model. Furthermore, room-temperature cathodoluminescence spectra of undoped and Zn-doped GaN nanowires showed emission peaks at 364 and 420 nm, respectively.  相似文献   

10.
11.
Fabrication of Zn/ZnO nanocables by thermal oxidation of Zn nanowires grown by RF magnetron sputtering is reported. Single crystalline Zn nanowires could be grown by controlling supersaturation of source material through the adjustment of temperature and Zn RF power. X-ray diffraction and high-resolution transmission electron microscopy showed that surfaces of these Zn nanowires, grown along the [0 1 0] direction, gradually oxidized inward the Zn core to form coaxial Zn/ZnO nanocables in the subsequent oxidation at 200 °C. In the Zn/ZnO nanocable, epitaxial relations of [1 0 0]Zn//[1 0 0]ZnO, and (0 0 1)Zn//(0 0 1)ZnO existed at the interface between the Zn core and ZnO shell. A number of dislocations were also observed in the interface region of the Zn/ZnO nanocable, which are attributed to large differences in the lattice constants of Zn and ZnO. With further increasing the oxidation temperature over 400 °C, Zn nanowires were completely oxidized to form polycrystalline ZnO nanowires. The results in this study suggest that coaxial Zn/ZnO nanocable can be fabricated through controlled thermal oxidation of Zn nanowires, yielding various cross-sectional areal fractions of Zn core and ZnO shell.  相似文献   

12.
The thermodynamics of growth conditions of GaAs nanowires using gold droplets is analyzed. Equilibrium conditions for steady-state growth using experimental molecular beam epitaxy (MBE) impinging molecular flows, as previously published, are calculated in the range 793–893 K. These show that: (i) the tie line for Ga liquidus composition in equilibrium with GaAs(s) is in the 0.4–0.6 mole fraction range, close to the GaAu–GaAs pseudo-binary section, (ii) the As content of the droplet is in the 0.2–0.4×10−3 mole fraction range and (iii) the growth rate is mainly governed by the contact angle that determines the droplet section. Different cooling conditions are analyzed using the Scheil–Guliver assumptions to compare final phases after solidification, as analyzed by X-ray diffraction (XRD), with our calculations. The agreement is very good and this feature demonstrates that quasi-equilibrium conditions prevail in the growth process of nanowires.  相似文献   

13.
Tip-growth and base-growth modes of Au-catalyzed zinc oxide nanowires (ZnO NWs) were synthesized on Au-film pre-deposited silicon substrates using Chemical Vapor Deposition (CVD) technique. The diameter of tip-growth Au-catalyzed ZnO NWs was proportional to the Au film thickness, whereas the areal density of these NWs was inversely proportional to the Au film thickness. It would be more appropriate to explain the growth of Au-catalyzed ZnO NWs by a combination of Vapor–Liquid–Solid and Vapor–Solid (VLS–VS) mechanisms instead of the conventional VLS mechanism, regardless of tip-growth or base-growth mode of Au-catalyzed ZnO NWs. The competition between the VLS and VS mechanism in the effectiveness of capturing the adsorbed Zn and O atoms would determine the final morphology of ZnO NWs. In addition, Au catalyst promoted the growth rate of NWs as compared to the self-catalyzed ZnO NWs.  相似文献   

14.
Thin FeO(1 1 1) buffer layers prepared on Mo(1 1 0) substrate were used to grow ordered ZnO films under ultrahigh vacuum condition, and were in situ characterized by various surface analytical techniques. A chemical interaction between Zn (or ZnO) and FeO(1 1 1) can effectively lower the interfacial energy, which is in favor of an epitaxial growth of ZnO on FeO layers. Compared with the MgO(1 1 1) buffer layer used for the growth of ZnO(0 0 0 1) on sapphire (0 0 0 1) surface, the FeO(1 1 1) thin films might be a better one because it is more thermally stable. Our experimental results provide constructive information on the growth mechanism of ZnO-based materials, which is helpful for further understanding the growth mechanism of related oxide materials.  相似文献   

15.
ZnO nanowires with variable aspect ratios and microstructures have been prepared by a hydrothermal reaction of Zn foil and Na2C2O4 solution at 140 °C. The ZnO nanowires are single crystalline with the wurtzite structure and grow in the [0 0 0 1] direction, and their aspect ratios and microstructures can be changed by tuning the reaction time and the Na2C2O4 concentration. UV and blue-green emissions that depended on the Na2C2O4 concentration are observed from the ZnO nanowires with different aspect ratios. The photosensitivity of ZnO ultralong nanowires with honeycomb-like micropatterns is found to be about 10 at 5 V.  相似文献   

16.
T. Fu  Y.G. Shen  Z.F. Zhou 《Journal of Non》2008,354(27):3235-3240
Amorphous carbon nitride (CNx) films with silicon addition up to 16 at.% are sputter deposited on Si(1 0 0) substrate, and the surface morphology is studied with scaling method based on atomic force microscopy. The surface roughness σ, the roughness exponent α, and the lateral correlation length ξ decrease with silicon content of the films, reaching 0.33 nm, 0.80 and 50 nm, respectively, for the film with [Si] = 16 at.%. The addition of silicon in the films leads to additional Si-N, Si-C-N and CN bonds revealed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The films undergo a structural transition from columnar to smooth morphology in cross-section with silicon addition demonstrated by field emission scanning electron microscopy. Nano-sized clusters sparsely dispersed in amorphous matrix of the film with [Si] = 16 at.% are observed by high-resolution transmission microscopy. According to the surface growth mechanism in which surface diffusion and geometrical shadowing drive structural and morphological evolution of the sputter deposited films, surface smoothing of the amorphous CNx films by silicon addition is explained by the formation of Si-N and Si-C-N bonds that impede surface diffusion of the adsorbed species during film growth, which leads to the reduced size of the columnar structures.  相似文献   

17.
We report on the growth of non-polar a-plane ZnO by CVD on r-plane-sapphire-wafers, a-plane GaN-templates and a-plane ZnO single-crystal substrates. Only the homoepitaxial growth approach leads to a Frank–van-der–Merwe growth mode, as shown by atomic force microscopy. The X-ray-diffraction spectra of the homoepitaxial thin films mirror the excellent crystalline quality of the ZnO substrate. The morphological and the structural quality of the homoepitaxial films is comparable to the best results for the growth on c-plane ZnO-substrates. The impurity incorporation, especially of group III elements, seems to be reduced when growing on the non-polar a-plane surface compared to the c-plane films as demonstrated by secondary ion mass spectrometry (SIMS). Optical properties have been investigated using low temperature photoluminescence measurements. We employed capacitance–voltage measurements (CV) to measure the background carrier density and its profile from substrate/film interface throughout the film to the surface. In thermal admittance spectroscopy (TAS) specific traps could be distinguished, and their thermal activation energies and capture cross sections could be determined.  相似文献   

18.
Zinc micro and nanostructures were synthesized in vacuum by condensing evaporated zinc on Si substrate at different gas pressures. The morphology of the grown Zn structures was found to be dependent on the oxygen partial pressure. Depending on oxygen partial pressure it varied from two-dimensional microdisks to one-dimensional nanowire. The morphology and structural properties of the grown micro and nanostructures were studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Transmission electron microscopy (TEM) studies on the grown Zn nanowires have shown that they exhibit core/shell-like structures, where a thin ZnO layer forms the shell. A possible growth mechanism behind the formation of different micro and nanostructures has been proposed. In addition, we have synthesized ZnO nanocanal-like structures by annealing Zn nanowires in vacuum at 350 °C for 30 min.  相似文献   

19.
A combination of experimental and computational fluid dynamics-based reactor modeling studies were utilized to study the effects of process conditions on GaN nanowire growth by metalorganic chemical vapor deposition (MOCVD) in an isothermal tube reactor. The GaN nanowires were synthesized on (0 0 0 1) sapphire substrates using nickel thin films as a catalyst. GaN nanowire growth was observed over a furnace temperature range of 800–900 °C at V/III ratios ranging from 33 to 67 and was found to be strongly dependent on the position of the substrate relative to the group III inlet tube. The modeling studies revealed that nanowire growth consistently occurred in a region in the reactor where the GaN thin-film deposition rate was reduced and the gas phase consisted primarily of intermediate species produced by the reaction and decomposition of trimethylgallium–ammonia adduct compounds. The GaN nanowires exhibited a predominant [1 1 2¯ 0] growth direction. Photoluminescence measurements revealed an increase in the GaN near-band edge emission intensity and a reduction in the deep-level yellow luminescence with increasing growth temperature and V/III ratio.  相似文献   

20.
The nucleation and growth of titanium dioxide (TiO2) and zinc oxide (ZnO) thin films on Fe2O3 (hematite), Al2O3 (α-alumina) and SiO2 (α-quartz) are studied by molecular dynamics simulations. The results show the formation of a strong interface region between the substrate and the film in the six systems studied here. A combination of polycrystalline and amorphous phases are observed in the TiO2 films grown on the three substrates. ZnO deposition on the Fe2O3 and Al2O3 crystals yields a monocrystalline film growth. The ZnO film deposited on the SiO2 crystal exhibits less crystallinity. The simulation results are compared with experimental results available in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号