首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heteroepitaxial ZnO films were grown by pulsed laser deposition on various substrates such as GaN-buffered C-Al2O3, C-Al2O3, A-Al2O3, and R-Al2O3. The epitaxy nature of the films was investigated mainly by synchrotron X-ray diffraction. The results showed that the GaN interlayer plays a positive role in growing an unstrained, well-aligned epitaxial ZnO film on the basal plane of Al2O3. Importantly, the ZnO film grown on R-Al2O3 has two differently aligned domains. The dominant (1 1 0) oriented domain has much better alignment in the in-plane direction than the minor portion of (0 0 1) oriented domain, while in the out-of-plane direction the two domains have almost the same mosaic distribution.  相似文献   

2.
Amorphous Al2O3 films were deposited on p-Si by rf magnetron sputtering to investigate their potential as a gate dielectric in organic thin film transistors (OTFTs). The deposition was performed at room temperature, 200 and 300 °C using Al2O3 and Al targets. Achieved Al2O3 films have higher capacitance values than thermally grown SiO2 as characterized by capacitance-voltage measurements. It is also found from current-voltage and roughness measurements that the leakage current and the surface roughness can be least when the films are deposited at room temperature. The capacitance of the film obtained from the Al2O3 target appears higher than that of the Al2O3 film from the Al target while the results of electrical breakdown are opposite. These room temperature processes are promising for applications to the gate dielectrics of organic TFTs.  相似文献   

3.
High-quality zinc oxide (ZnO) films were successfully grown on ZnO-buffered a-plane sapphire (Al2O3 (1 1 2¯ 0)) substrates by controlling temperature for lateral growth using chemical bath deposition (CBD) at a low temperature of 60 °C. X-ray diffraction analysis and transmission electron microscopy micrographs showed that the ZnO films had a single-crystalline wurtzite structure with c-axis orientation. Rocking curves (ω-scans) of the (0 0 0 2) reflections showed a narrow peak with full width at half maximum value of 0.50° for the ZnO film. A reciprocal space map indicated that the lattice parameters of the ZnO film (a=0.3250 nm and c=0.5207 nm) were very close to those of the wurtzite-type ZnO. The ZnO film on the ZnO-buffered Al2O3 (1 1 2¯ 0) substrate exhibited n-type conduction, with a carrier concentration of 1.9×1019 cm−3 and high carrier mobility of 22.6 cm2 V−1 s−1.  相似文献   

4.
Fe2O3–CaO–SiO2 glass ceramics containing nucleation agent P2O5/TiO2 were prepared by sol-gel method. The samples were characterized by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The activation energy and kinetic parameters for crystallization of the samples were calculated by the Johnson-Mehi-Avrami (JMA) model and Augis-Bennett method according to the results of DSC. The results showed that the crystallization mechanism of Fe2O3–CaO–SiO2 glass, whose non-isothermal kinetic parameter n = 2.3, was consistent with surface crystallization of the JMA model. The kinetics model function of Fe2O3–CaO–SiO2 glass, f(α) = 2.3(1–α)[–ln(1–α)]0.57, was also obtained. The addition of nucleation agent P2O5/TiO2 could reduce the activation energy, which made the crystal growth modes change from onedimensional to three-dimensional.  相似文献   

5.
The effect of the substitution of ZnO for TiO2 on the chemical durability of Bi2O3–SiO2–ZnO–B2O3 glass coatings in hot acidic medium (0.1 N H2SO4 at 80 °C) for different times was studied. The thick films produced by a screen-printing method and heat treated at 700 °C/5 min were analyzed by X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy. The glass from the Bi2O3–SiO2–ZnO–B2O3 system developed Zn2SiO4 and a glassy phase that were readily attacked by hot 0.1 N sulfuric acid, whereas the heat treated coating from the Bi2O3–SiO2–TiO2–ZnO–B2O3 system presented a finer microstructure with thin interconnected Bi4Ti3O12 crystals and a glassy phase more resistant to hot 0.1 N sulfuric acid attack etching.  相似文献   

6.
Zinc oxide layers have been grown by magnetron sputtering in an oxygen atmosphere on structured sapphire surfaces. The formation of ZnO islands oriented in two directions (the so-called domains) was observed on (0001) Al2O3 surfaces with steps spaced by a distance from several thousands to several tens of thousands of nanometers. The islands formed along steps on (0001) Al2O3 surfaces with an ordered terrace-step structure (and, subsequently, ZnO films) have only one orientation. Another method is proposed for suppressing domains during ZnO growth on (0001) Al2O3 d.  相似文献   

7.
The microstructural characteristics and crystallographic evolutions of Ga-doped ZnO (GZO) films grown at high temperatures were examined by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). The GZO films with various film thicknesses were grown on (0 0 0 1) Al2O3 substrates at 750 °C by RF magnetron sputtering using a 2 wt% Ga-doped ZnO single target. The (0 0 0 2) ZnO peaks in the XRD patterns shifted to a higher angle with increasing film thickness and an additional (1 0 1¯ 1) ZnO peak was observed in the final stage of film growth. HRTEM showed the epitaxial growth of GZO films in the initial growth stage and the formation of surface protrusions in the intermediate stage due to elastic relaxation. The surface protrusions consisted of {1 0 1¯ 1}, {1 0 1¯ 3}, and {0 0 0 2} planes. After the surface protrusions had formed, a GZO film with many c-axis tilted grains formed due to plastic relaxation, where the tilted grain boundaries had an angle of 62° to the substrate. The formation of the protrusions and c-axis tilted grains was closely related to the strain status of the film induced by Ga incorporation, high-temperature growth and a high film thickness.  相似文献   

8.
High-quality ZnMgO films were grown by the radio frequency (RF) magnetron sputtering technique in pure oxygen ambient. Single-crystal films were obtained, when the Mg concentration was Zn0.87Mg0.13O or lower in the case of ZnMgO/Al2O3 and when it was Zn0.65Mg0.35O or lower in the case of ZnMgO/ZnO. Polycrystalline films were obtained when the growth temperature was lower than 500 °C, regardless of the Mg concentration. Position of the photoluminescence (PL) ultraviolet (UV) peak of the ZnMgO film shifted with the addition of Mg, from 3.33 eV (ZnO) to 3.51 eV (Zn0.87Mg0.13O) and 3.70 eV (Zn0.65Mg0.35O). It was also observed that growth of the ZnMgO films at higher temperature resulted in higher band-gap energy. It was proposed that this phenomenon is because concentration of the substitutional Mg atoms occupying Zn site is increased as the growth temperature increases.  相似文献   

9.
Raman spectra, using visible (514 nm) and ultraviolet (244 nm) excitation, of tetrahedral amorphous carbon (ta-C) films of thickness of 5 nm have been studied as a function of different substrates materials. These materials are Fe-Co (Fe: 67 at.%, Co: 33 at.%) alloy, Fe-Ni alloy (Fe: 18 at.%, Ni: 82 at.%), Au and Al2O3-TiC (Al2O3: 64 at.%, TiC: 36 at.%), which are mainly used in magnetic recording sliders. The spectra show that the films deposited on Al2O3-TiC contain the highest sp3 content, with a lower sp3 content observed in films deposited to Fe-Co and Fe-Ni alloys. The lowest sp3 content was observed in films on the Au substrate. The results also indicate that the anti-wear performance of ta-C film on different substrates varies as Al2O3-TiC (the best) > Fe-Co and Fe-Ni alloy > Au (the worst). Also mechanisms are proposed to explain the effect of substrate material on these thin film properties.  相似文献   

10.
《Journal of Non》2007,353(24-25):2374-2382
Glass materials in the ZnO–Fe2O3–SiO2 system, containing zinc ferrite nanoparticles, were prepared by the sol–gel method and characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Mössbauer spectroscopy, AC- and DC-magnetization techniques. The gel samples, dried at 130 °C, were further heat treated in air at 500 and 800 °C. At 500 °C zinc ferrite and hematite nanoparticles, with an average size of approximately 24 nm, were precipitated in the brown and opaque 10ZnO–10Fe2O3–80SiO2 and in the ruby colored transparent 5ZnO–5Fe2O3–90SiO2 and 2.5ZnO–2.5Fe2O3–95SiO2 glass matrices. In the 5ZnO–5Fe2O3–90SiO2 sample the nanoparticles exhibited ferro or ferrimagnetic interactions combined with superparamagnetism with a blocking temperature of approximately 14 K. Heating at 800 °C seems to cause partial dissolution of the zinc ferrite and hematite particles in all the investigated compositions. Accordingly at 800 °C the 5ZnO–5Fe2O3–90SiO2 glass shows a paramagnetic behavior down to 2 K.  相似文献   

11.
In this work, we report for the first time the improvement of the photovoltaic characteristics of dye-sensitized solar cells (DSSCs) by doping TiO2 with Fe2O3. DSSCs were fabricated using various percentages of Fe2O3-doped TiO2 composite nanoparticles. The Fe2O3-doped DSSCs exhibited a maximum conversion efficiency of 5.76% because of the effective electron transport. DSSCs based on Fe2O3-doped TiO2 films showed better photovoltaic performance than cells fabricated with only TiO2 nanoparticles. This result was attributed to the prevention of recombination between electrons in the TiO2 conduction band with the dye or electrolytes. A mechanism was suggested based on impedance results, which indicated improved electron transport at the interface of the TiO2/dye/electrolyte.  相似文献   

12.
Ultrathin La2O3 gate dielectric films were prepared on Si substrate by ion assistant electron-beam evaporation. The growth processing, interfacial structure and electrical properties were investigated by various techniques. From XRD results, we found that the La2O3 films maintained the amorphous state up to a high annealing temperature of 900 °C for 5 min. From XPS results, we also discovered that the La atoms of the La2O3 films did not react with silicon substrate to form any La-compound at the interfacial layer. However, a SiO2 interfacial layer was formed by the diffusion of O atoms of the La2O3 films to the silicon substrate. From the atomic force microscopy image, we disclosed that the surface of the amorphous La2O3 film was very flat. Moreover, the La2O3 film showed a dielectric constant of 15.5 at 1 MHz, and the leakage current density of the La2O3 film was 7.56 × 10−6 A/cm2 at a gate bias voltage of 1 V.  相似文献   

13.
GaN thin films have been grown on Si(1 1 1) substrates using an atomic layer deposition (ALD)-grown Al2O3 interlayer. This thin Al2O3 layer reduces strain in the subsequent GaN layer, leading to lower defect densities and improved material quality compared to GaN thin films grown by the same process on bare Si. XRD ω-scans showed a full width at half maximum (FWHM) of 549 arcsec for GaN grown on bare Si and a FWHM as low as 378 arcsec for GaN grown on Si using the ALD-grown Al2O3 interlayer. Raman spectroscopy was used to study the strain in these films in more detail, with the shift of the E2(high) mode showing a clear dependence of strain on Al2O3 interlayer thickness. This dependence of strain on Al2O3 thickness was also observed via the redshift of the near bandedge emission in room temperature photoluminescence (RT-PL) spectroscopy. The reduction in strain results in a significant reduction in both crack density and screw dislocation density compared to similar films grown on bare Si. Screw dislocation density of the films grown on Al2O3/Si substrates approaches that of typical GaN layers on sapphire. This work shows great promise for the use of oxide interlayers for growth of GaN-based LEDs on Si.  相似文献   

14.
Vertically aligned arrays of ZnO nanorod were synthesized on the Au/SiO2/Si(1 0 0) substrate by a simple aqueous solution growth process, without pre-prepared ZnO seed layer. For comparison, glass and SiO2/Si were also used as substrates, and the results show that the Au layer plays a decisive role in orienting the growth of the ZnO nanorod. The effects of other growth parameters, including Zn2+ concentration and growth time, on morphology, density, and orientation of the ZnO nanostructure were also studied and with longer reaction time, a new structure namely ZnO nanotip was obtained. Moreover, the growth mechanism of ZnO nanorod arrays grown on the Au/SiO2/Si substrate was proposed.  相似文献   

15.
《Journal of Non》2006,352(32-35):3697-3704
This work reports the investigation of the characteristics of catalysts produced by the sol gel process. Our analysis focuses on the properties related to heterogeneous catalysis, such as methane steam reforming, dry reforming, hydrogenation of organic compositions. Alumina, silica and titania based materials doped with Ni were synthesized. The characterization techniques used were: temperature programmed reduction, thermogravimetric analysis, specific surface area and X-ray powder diffraction. The specific surface area values obey the following sequence: Ni–SiO2 > Ni–Al2O3 > Ni–TiO2. The temperature programmed reduction indicated that in the Ni–SiO2 sample, the nickel oxide is present in two different forms on the surface; the Ni–Al2O3 material presented one peak at high temperature, suggesting the presence of a nickel aluminate form. However, Ni–TiO2 did not present reduction peaks. The thermogravimetric analysis, which was performed under inert atmosphere, showed the decomposition of the organic residues adsorbed on surface. The X-ray powder diffraction patterns of calcined materials showed two crystalline forms for TiO2 in Ni–TiO2 rutile and anatase. In Ni–Al2O3, crystalline areas composed of α-Al2O3, γ-Al2O3 and NiO were observed and finally for Ni–SiO2, amorphous areas and NiO were found.  相似文献   

16.
Glass–ceramics with the composition 2Fe2O3.1ZnO.1MgO.96SiO2 [4ZnMgFe] and 2Fe2O3.2ZnO.3MgO.93SiO2 [7ZnMgFe] (mol%) were prepared using the sol–gel method. X-ray diffraction (XRD), scanning electron microscopy (SEM), electron diffraction (ED) and Mössbauer spectroscopy (MS) were used to investigate the glass–ceramics structure. The samples contain ferrite nanoparticles embedded in a glass matrix. However, zinc ferrite nanoparticles seems to be the preferential crystalline phase formed. The amount of ferrite particles depends on treatment temperature and sample composition. The Mössbauer spectroscopy measurements show that ferrite nanoparticles can exhibit a ferrimagnetic behaviour combined with superparamagnetism.  相似文献   

17.
Vickers indentations in some alumiio-borate glasses were studied. Glass compositions are based on the system B2O3Al2O3CaO with replacement of part of all the CaO by alkali oxide or divalent oxide, or replacement of part of B2O3 by SiO2, TiO2 or ZrO2. Trends in Vickers hardness values are correlated with the Littleton softening points of the same glasses. Observations of the indentations indicate the possibility of a flow mechanism for forming indentations.  相似文献   

18.
ZnO thin films doped with Li (ZnO:Li) were deposited onto SiO2/Si (100) substrates by direct‐current sputtering technique in the temperature range from room temperature to 500 °C. The crystalline structure, surface morphology and composition, and optical reflectivity of the deposited films were studied by X‐ray diffraction (XRD), Scanning Electron Microscopy (SEM), X‐ray Photoelectron Spectroscopy (XPS) and optical reflection measurements. Rough surface p‐type ZnO thin film deposition was confirmed. The results indicated that the ZnO:Li films growed at low temperatures show c‐axis orientation, while a‐axis growth direction is preferable at high temperatures. Moreover, the optical reflectivity from the surface of the films matched very well with the obtained results. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
The sol-gel route has been applied to obtain ZnO-TiO2 thin films. For comparison, pure TiO2 and ZnO films are also prepared from the corresponding solutions. The films are deposited by a spin-coated method on silicon and glass substrates. Their structural and vibrational properties have been studied as a function of the annealing temperatures (400-750 °C). Pure ZnO films crystallize in a wurtzite modification at a relatively low temperature of 400 °C, whereas the mixed oxide films show predominantly amorphous structure at this temperature. XRD analysis shows that by increasing the annealing temperatures, the sol-gel Zn/Ti oxide films reveal a certain degree of crystallization and their structures are found to be mixtures of wurtzite ZnO, Zn2TiO4, anatase TiO2 and amorphous fraction. The XRD analysis presumes that Zn2TiO4 becomes a favored phase at the highest annealing temperature of 750 °C. The obtained thin films are uniform with no visual defects. The optical properties of ZnO-TiO2 films have been compared with those of single component films (ZnO and TiO2). The mixed oxide films present a high transparency with a slight decrease by increasing the annealing temperature.  相似文献   

20.
Preparation and properties of porous glass using fly ash as a raw material   总被引:1,自引:0,他引:1  
The porous glasses were prepared by a conventional phase separation method using coal fly ash as a raw material, and the properties of these porous glasses were investigated. The composition of coal fly ash is basically composed of SiO2–Al2O3–Fe2O3–CaO system and the SiO2–B2O3–Al2O3–CaO–Na2O system of glass was chosen as base glass composition. The pore diameter increases proportional to cube root of heating time (t1/3), however, the early stage of phase separation is not clear. It is estimated that the rate determining step may be the diffusion process of structural units involving oxygen ions and the phase separation may take place by the nucleation and growth mechanism, and the relatively larger pores of above 1 μm can be obtained easily. The chemical composition of porous glasses is SiO2–B2O3–Al2O3(–CaO–Na2O). A relatively large amount of fly ash (>40%) can be used successfully for the preparation of porous glass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号