首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present MOVPE-grown, high-quality AlxGa1−x N layers with Al content up to x=0.65 on Si (1 1 1) substrates. Crack-free layers with smooth surface and low defect density are obtained with optimized AlN-based seeding and buffer layers. High-temperature AlN seeding layers and (low temperature (LT)/high temperature (HT)) AlN-based superlattices (SLs) as buffer layers are efficient in reducing the dislocation density and in-plane residual strain. The crystalline quality of AlxGa1−xN was characterized by high-resolution X-ray diffraction (XRD). With optimized AlN-based seeding and SL buffer layers, best ω-FWHMs of the (0 0 0 2) reflection of 540 and 1400 arcsec for the (1 0 1¯ 0) reflection were achieved for a ∼1-μm-thick Al0.1Ga0.9N layer and 1010 and 1560 arcsec for the (0 0 0 2) and (1 0 1¯ 0) reflection of a ∼500-nm-thick Al0.65Ga0.35N layer. AFM and FE-SEM measurements were used to study the surface morphology and TEM cross-section measurements to determine the dislocation behaviour. With a high crystalline quality and good optical properties, AlxGa1−x N layers can be applied to grow electronic and optoelectronic device structures on silicon substrates in further investigations.  相似文献   

2.
Semi-polar (1 1 2¯ 2) GaN layers were selectively grown by metal organic chemical vapor phase epitaxy on patterned Si (3 1 1) substrates without SiO2 amorphous mask. The (1 1 2¯ 2) GaN layers could be selectively grown only on Si (1 1 1) facets when the stripe mask width was narrower than 1 μm even without SiO2. Inhomogeneous spatial distribution of donor bound exciton (DBE) peak in low-temperature cathodoluminescence (CL) spectra was explained by the difference of growth mode before and after the coalescence of stripes. It was found that the emission intensity related crystal defects is drastically decreased in case of selective growth without SiO2 masks as compared to that obtained with SiO2 masks.  相似文献   

3.
A high-energy X-ray diffraction study has been carried out on a series of 0.5Li2S + 0.5[(1 − x)GeS2 + xGeO2] glasses with x = 0.0, 0.1, 0.2, 0.4, 0.6 and 0.8. Structure factors were measured to wave vectors as high as 30 Å−1 resulting in atomic pair distribution functions with high real space resolution. The three dimensional atomic-scale structure of the glasses was modeled by reverse Monte Carlo simulations based on the diffraction data. Results from the simulations show that at the atomic-scale 0.5Li2S + 0.5[(1 − x)GeS2 + xGeO2] glasses may be viewed as an assembly of independent chains of (Li+-S)2GeS2/2 and (Li+-O)2GeO2/2 tetrahedra as repeat units, where the Li ions occupy the open space between the chains. The new structure data may help understand the reasons for the sharp maximum in the Li+ ion conductivity at x ∼ 0.2.  相似文献   

4.
Epitaxial lateral overgrowth was applied to a-plane GaN on r-plane sapphire using SiO2 stripe masks oriented parallel to [0 1¯ 1 1]. Coalescence and defect distribution was studied using scanning electron microscopy and cathodoluminescence. Defects, i.e., threading dislocations and basal plane stacking faults from the template propagate into the overgrown layer through the mask openings. Stacking faults spread into the whole overgrown layer, whereas threading dislocations are laterally confined in the region above the mask where a part of them is terminated at the inclined coalescence boundary. Lateral overgrowth and dislocation termination at the coalescence boundary leads to an improvement in luminescence intensity and crystal quality, in comparison to the template. The measured XRD rocking curve FWHM were 453″ with incidence along the [0 0 0 1] c-direction and 280″ with incidence along the [0 1 1¯ 0] m-direction.  相似文献   

5.
Epitaxial NiO (1 1 1) and NiO (1 0 0) films have been grown by atomic layer deposition on both MgO (1 0 0) and α-Al2O3 (0 0 l) substrates at temperatures as low as 200 °C by using bis(2,2,6,6-tetramethyl-3,5-heptanedionato)Ni(II) and water as precursors. The films grown on the MgO (1 0 0) substrate show the expected cube on cube growth while the NiO (1 1 1) films grow with a twin rotated 180° on the α-Al2O3 (0 0 l) substrate surface. The films had columnar microstructures on both substrate types. The single grains were running throughout the whole film thickness and were significantly smaller in the direction parallel to the surface. Thin NiO (1 1 1) films can be grown with high crystal quality with a FWHM of 0.02–0.05° in the rocking curve measurements.  相似文献   

6.
The optical properties of Cr3+ ions in lithium metasilicate (Li2O · SiO2) transparent glass-ceramics were investigated. The main crystalline phase precipitated was the lithium metasilicate (Li2O · SiO2) crystal. The percent crystallinity and crystalline size were ranging 65-75% and 20-35 nm, respectively. The color changes drastically to deep pink from emerald green upon crystallization. New and strong absorption bands appeared and the absorption intensity increases by about 10 times that in glass. These new absorption bands are found to be derived from Cr3+ ions in octahedral sites in the lithium metasilicate crystal lattice. Cr3+ ions substitute for three Li+ ions and occupy the distorted octahedral site between single [SiO4]n chains of lithium metasilicate crystal. The ligand field parameters can be estimated: 10Dq = 13 088 cm−1, B = 453 cm−1, Dq/B = 2.89 and C = 2036 cm−1. The near-infrared luminescence centered at 1250 nm was not detected in the deep pink glass-ceramics unlike emerald green glass.  相似文献   

7.
The continual improvement of IV-VI materials grown by molecular beam epitaxy (MBE) is a key step in the development of IV-VI infrared semiconductor devices on silicon substrates. This study presents a novel surface-treatment method which is carried out during MBE growth of monocrystalline PbSe on Si(1 1 1)-oriented substrates. Details of the experimental procedures are described and supported by reflection high-energy electron diffraction (RHEED) patterns. The effect of the in-situ surface-treatment method is exhibited in the forms of improved electrical and morphological properties of PbSe thin films. Specially, the carrier mobility increases almost three-fold at 77 K and nearly two-fold at 300 K. The density of the growth pits undergoes almost three-fold reduction, whereas the density of the threading dislocations decreases around four-fold.  相似文献   

8.
L.Y. Zhu 《Journal of Non》2009,355(1):68-207
ZrxTi1−xO2 (x = 0.1-0.9) fibers were prepared by the sol-gel dry-spinning method. Polyacetylacetonatozirconium (PAZ) and tetrabutyl titanate (C16H36O4Ti) were used as raw materials. The green fibers were obtained from the amorphous spinnable solution and then heat-treated to convert into polycrystalline fibers. The main phase changes from TiO2 to zirconium titanate (ZT) and then tetragonal ZrO2 with increasing ZrO2 content. The crystallization temperature varied with the molar ratio of Zr:Ti. The heat-treated fibers at 1050 °C have few pores and no cracks with diameters of 10-20μm and lengths of 1-5 cm.  相似文献   

9.
The effect of the variation in phosphate (P2O5) content on the structure of two series of bioactive glasses in the quaternary system SiO2-Na2O-CaO-P2O5 was studied. The first series (I) was a simple substitution of P2O5 for SiO2 keeping the Na2O:CaO ratio fixed (1.00:0.87). The second series was designed to ensure charge neutrality in the orthophosphate , therefore as P2O5 was added the Na2O and CaO content was varied to provide sufficient Na+ and Ca2+ cations to charge balance the orthophosphate present. The glass network connectivity (NC) was calculated for each glass and a modification for the presence of a separate P2O5 phase was included (NC′). 31P and 29Si magic-angle-spinning nuclear magnetic resonance (MAS-NMR) spectroscopy was performed on glass series I and II to determine the structural units present and their relation to glass properties. 31P MAS-NMR spectra of series I resulted in a broad resonance around 9 ppm corresponding to orthophosphate in an amorphous environment. The 9.25 mol% P2O5 glass shown to be partially crystalline by X-ray diffraction was heat treated, and the 31P MAS-NMR spectrum showed a sharp peak around 3 ppm corresponding to calcium orthophosphate or sodium pyrophosphate and overlapping broader peaks at 8.5, 10.5 and 14 ppm possibly corresponding to two mixed calcium-sodium orthophosphate phases and amorphous sodium orthophosphate respectively. 31P MAS-NMR spectra of series II resulted in a broad resonance around 10.5 ppm corresponding to orthophosphate in an amorphous environment. 29Si MAS-NMR spectra of glasses from series I showed a shift in the resonance peak from around −78 to −86 ppm indicating an increase in Q3 species in the glass and a reduction in Q2 with phosphate addition confirming the presence of orthophosphate. The heat treated sample showed a sharp 29Si-NMR resonance at −88 ppm, indicating a crystalline Q2 six-membered combeite (Na2O · 2CaO · 3SiO2) silicate-type phase, which was confirmed by powder X-ray diffraction. 29Si MAS-NMR spectra of glasses from series II showed no shift in the resonance at around −78 ppm across the series, confirming an orthophosphate environment.  相似文献   

10.
High quality, straight GaN nanowires (NWs) with diameters of 50 nm and lengths up to 3 μm have been grown on Si(0 0 1) using Au as a catalyst and the direct reaction of Ga with NH3 and N2:H2 at 900 °C. These exhibited intense, near band edge photoluminescence at 3.42 eV in comparison to GaN NWs with non-uniform diameters obtained under a flow of Ar:NH3, which showed much weaker band edge emission due to strong non-radiative recombination. A significantly higher yield of β-Ga2O3 NWs with diameters of ≤50 nm and lengths up to 10 μm were obtained, however, via the reaction of Ga with residual O2 under a flow of Ar alone. The growth of GaN NWs depends critically on the temperature, pressure and flows in decreasing order of importance but also the availability of reactive species of Ga and N. A growth mechanism is proposed whereby H2 dissociates on the Au nanoparticles and reacts with Ga giving GaxHy thereby promoting one-dimensional (1D) growth via its reaction with dissociated NH3 near or at the top of the GaN NWs while suppressing at the same time the formation of an underlying amorphous layer. The higher yield and longer β-Ga2O3 NWs grow by the vapor liquid solid mechanism that occurs much more efficiently than nitridation.  相似文献   

11.
Spectrometric and ellipsometric studies of (1 − x)TiO2 · xLn2O3 (Ln = Nd, Sm, Gd, Er, Yb; x = 0.33, 0.5) thin films at room temperature were performed. The obtained dispersion dependences of refractive indices are successfully described by the optical-refractometric relation. The dependence of optical pseudogap and refractive indices on composition and molar mass of the films is investigated. The influence of compositional disordering on the energy width of the exponential absorption edge is studied.  相似文献   

12.
Ultra-thin homogeneous oxynitride films are prepared on Si(0 0 1). The Si surface is cleaned in UHV by heating (flashing) and is exposed to different pressures of N2O at altered temperatures. Thus oxynitride layers of different thickness and different properties are grown depending on the N2O pressure and the Si temperature. This is illustrated by a schematic diagram. The properties of the different oxynitride layers were studied by a combined photoemission electron microscopy (PEEM) and photoelectron spectroscopy (PES) investigation using highly monochromatic synchrotron radiation. The amount of oxygen and nitrogen incorporated in the oxynitride layers is determined from the PES measurements. The typical surface morphology for different preparation conditions is shown in PEEM images.  相似文献   

13.
SnO2 films have been deposited on Y-stabilized ZrO2 (YSZ) (1 0 0) substrates at different substrate temperatures (500–800 °C) by metalorganic chemical vapor deposition (MOCVD). Structural, electrical and optical properties of the films have been investigated. The films deposited at 500 and 600 °C are epitaxial SnO2 films with orthorhombic columbite structure, and the HRTEM analysis shows a clear epitaxial relationship of columbite SnO2(1 0 0)||YSZ(1 0 0). The films deposited at 700 and 800 °C have mixed-phase structures of rutile and columbite SnO2. The carrier concentration of the films is in the range from 1.15×1019 to 2.68×1019 cm−3, and the resistivity is from 2.48×10−2 to 1.16×10−2 Ω cm. The absolute average transmittance of the films in the visible range exceeds 90%. The band gap of the obtained SnO2 films is about 3.75–3.87 eV.  相似文献   

14.
Xinwei Wu 《Journal of Non》2011,357(15):2846-3750
Sodium tracer diffusion coefficients, DNa*, have been measured in sodium borosilicate glasses of the type (Na2O)0.2[(BO1.5)x(SiO2)1 − x]0.8 as a function of temperature and the composition parameter x. In these glasses, which can alternatively also be described by using the formula Na2O·(2B2O3)x·(4SiO2)1 − x, one network former unit, SiO2, is replaced by another one, BO1.5, while keeping the sodium concentration constant. At constant temperature, the tracer diffusion coefficient of sodium as a function of x has a shallow minimum at about x = 0.7. At temperatures below about 310 °C the temperature dependences of the measured tracer diffusion coefficients are of Arrhenius-type; at higher temperatures one observes an increase in the temperature dependence with increasing temperature. The activation energy derived from sodium tracer diffusion data for temperatures up to about 310 °C increases about linearly with increasing x from about 70 to 80 kJ/mol. The pre-exponential factor as a function of x varies by about one order of magnitude and has a minimum at about x = 0.4. Values derived for the Haven-ratio are smaller than one and show a shallow minimum as a function of x at around x = 0.75. Furthermore, it was investigated whether there is a significant, directly measurable uptake of water during annealing in moist atmospheres and whether water taken up from moist atmospheres can influence the diffusion of sodium.  相似文献   

15.
R.G. Kuryaeva 《Journal of Non》2009,355(3):159-163
The refractive index for glass of the CaO · Al2O3 · хSiO2 system with х = 6 in the range of pressures up to 6.0 GPa was measured using a polarization-interference microscope and an apparatus with diamond anvils. The changes in the relative density characterizing the compressibility of glass were estimated from the measured refractive indices within the framework of the theory of photoelasticity. The data were compared with the previous data for glasses of the same system with х = 2 and 4. The most compressible of the three glasses in the range 2.0-6.0 GPa was the CaO · Al2O3 · 6SiO2 glass. For glasses with х = 2, 4 and 6 we calculated the degrees of polymerization of silicon-aluminum-oxygen network, NBO/T (NBO - non-bridging oxygen), which are determined as the ratio of the number of gram-ions of non-bridging oxygen atoms to the total number of gram-ions of network formers. The structure-chemical parameter NBO/T was calculated with due regard for the formation of triclusters and highly coordinated aluminum. The degree of polymerization of the CaO · Al2O3 · хSiO2 glasses increases with increasing х, which agrees with the change of their relative density under pressure.  相似文献   

16.
In the present paper, the effect of carbon on the microstructural evolution of Zr66.7−xNi33.3Cx (x = 0, 1, 3) alloys during mechanical alloying has been investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that these three alloys undergo similar amorphization and crystallization processes, and the final milling product is a metastable fcc-Zr66.7−xNi33.3Cx phase. The carbon addition can shorten the milling time for the complete amorphization reaction and enhance the stability of the formed amorphous alloy, which can suppress the mechanically induced amorphous-crystalline phase transformation with further increasing milling time.  相似文献   

17.
B. Ko?cielska 《Journal of Non》2008,354(14):1549-1552
The studies of electrical conductivity of NbN-SiO2 films are reported. To obtain these films, sol-gel derived xNb2O5-(100 − x)SiO2 (where x = 100, 90, 80, 70, 60, 50 mol%) coatings were nitrided at 1200 °C. The nitridation process leads to the formation of some disordered structures, with NbN metallic grains dispersed in insulating SiO2 matrix. The structure of the samples was studied using X-ray diffraction (XRD) and atomic force microscopy (AFM). The electrical conductivity was measured with the conventional four-terminal method in the temperature range from 5 to 280 K. The superconducting transition was not observed even for the sample that does not contain silica. All the samples exhibit negative temperature coefficient of resistivity. The results of conductivity versus temperature may be described on the grounds of a model proposed for a weakly disordered system.  相似文献   

18.
The effects of deposition rate on the microstructure and thermoelectric (TE) properties of Ca3Co4O9 thin films fabricated by pulsed laser deposition (PLD) technique were investigated. X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM) revealed that a fast deposition rate resulted in not only low crystallinity but also the existence of the CaxCoO2 secondary phase. Formation of CaxCoO2 was inevitable during the thin film growth, and this was discussed from both structural and compositional point of view. With longer deposition interval or with sufficient oxygen at a lower deposition rate, the CaxCoO2 phase was able to transit into the desired Ca3Co4O9 phase during the coalescence process. The quality of the thin films was further analyzed by electrical properties measurements. The Ca3Co4O9 thin film fabricated at a slower deposition rate was found to exhibit a low electrical resistivity of 9.4 mΩ cm and high Seebeck coefficient of 240 μV/K at about 700 °C, indicating a good quality film.  相似文献   

19.
The well known and characterized fast ion conducting (FIC) LiI + Li2S + GeS2 glass-forming system has been further optimized for higher ionic conductivity and improved thermal and chemical stability required for next generation solid electrolyte applications by doping with Ga2S3 and La2S3. These trivalent dopants are expected to eliminate terminal and non-bridging sulfur (NBS) anions thereby increasing the network connectivity while at the same time increasing the Li+ ion conductivity by creating lower basicity [(Ga or La)S4/2] anion sites. Consistent with the finding that the glass-forming range for the Ga2S3 doped compositions is larger than that for the La2S3 compositions, the addition of Ga2S3 is found to eliminate NBS units to create bridging sulfur (BS) units that not only gives an improvement to the thermal stability, but also maintains and in some cases increases the ionic conductivity. The compositions with the highest Ga2S3 content showed the highest Tgs of ∼325 °C. The addition of La2S3 to the base glasses, by comparison, is found to create NBS by forming high coordination octahedral LaS63− sites, but yet still improved the chemical stability of the glass in dry air and retained its high ionic conductivity and thermal stability. Significantly, at comparable concentrations of Li2S and Ga2S3 or La2S3, the La2S3-doped glasses showed the higher conductivities. The addition of the LiI to the glass compositions not only improved the glass-forming ability of the compositions, but also increased the ionic conductivity glasses. LiI concentrations from 0 to 40 mol% improved the conductivities of the Ga2S3 glasses from ∼10−5 to ∼10−3 (Ω cm)−1 and of the La2S3 glasses from ∼10−4 to ∼10−3 (Ω cm)−1 at room temperature. A maximum conductivity of ∼10−3 (Ω cm)−1 at room temperature was observed for all of the glasses and this value is comparable to some of the best Li ion conductors in a sulfide glass system. Yet these new compositions are markedly more thermally and chemically stable than most Li+ ion conducting sulfide glasses. LiI additions decreased the Tgs and Tcs of the glasses, but increased the stability towards crystallization (Tc − Tg).  相似文献   

20.
Robert Carl 《Journal of Non》2007,353(3):244-249
Glasses with the compositions xNa2O · 10MgO · (90 − x)SiO2, 10Na2O · xMgO · (90 − x)SiO2, 5Na2O · 15MgO · xAl2O3 · (80 − x)SiO2, xNa2O · 10MgO · 10Al2O3 · (80 − x)SiO2, 10Na2O · 10MgO · xAl2O3 · (80 − x)SiO2, 10Na2O · 5MgO · 10Al2O3 · (80 − x)SiO2 were melted and studied using UV-vis-NIR spectroscopy in the wavenumber range from 5000 to 30 000 cm−1. At [Al2O3] > [Na2O], the UV-cut off is strongly shifted to smaller wavenumbers and the NIR peak at around 10 000 cm−1 attributed to Fe2+ in sixfold coordination gets narrower. Furthermore, the intensity of the NIR peak at 5500 cm−1 increases. This is explained by the incorporation of iron in the respective glass structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号