首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 774 毫秒
1.
The time dependent Ginzburg–Landau equations (TDGLE) are used to study the properties of a mesoscopic superconducting square surrounded by different metallic materials. The properties of the metallic environment are taken into account by De Gennes boundary conditions, via the extrapolation length b. The external magnetic field is applied perpendicularly to the square surface. The TDGLE are used upon taking the magnetic field and the order parameter invariant along z-direction. It is determined the b-limit for the occurrence of a single vortex in a mesoscopic square of area d2, d varies discretely from 4ξ(0) to 10ξ(0). We can show a logarithmical dependence of the sample size as a function on b parameter.  相似文献   

2.
The dynamics of a two dimensional chain like structure of vortices is studied in the model of nonlinear time dependent Ginzburg–Landau equations (TDGL). The transition between different linear chains of vortices in a superconducting homogeneous slab with both surfaces in contact with a thin layer of metallic material is analyzed. The magnetization curve, vortex number, vortex configurations and modulus of the order parameter are studied as a function of the external magnetic field. We show how these vortex configurations are affected by the extrapolation length b (de Gennes boundary conditions), Ψ due to the proximity effects in a mesoscopic sample of area dx × dy, where dy = 60ξ(0) and dx varies discretely from 30ξ(0) to 12ξ(0). Possible connection with recent theoretical results in a two dimensional system of charged particles is discussed.  相似文献   

3.
We have studied superconducting properties by measuring the electrical resistivity and magnetization for a single crystal of Rh17S15 with a superconducting transition temperature Tc=5.4 K. The upper critical field Hc2(0) and the lower critical field Hc1(0) were obtained as 20.5 and 0.0033 T, respectively. Correspondingly, the coherence length and the penetration depth were estimated to be 40 and 4900 Å, respectively, indicating that Rh17S15 is a typical type-II superconductor with strong correlations of conduction electrons with a 4d-electron character of Rh atoms. The present electron correlations are formed to be enhanced with increasing pressure.  相似文献   

4.
In this work we investigated theoretically the vortex properties of mesoscopic samples of different geometries, submitted to an external magnetic field. We use both London and Ginzburg–Landau theories and also solve the non-linear Time Dependent Ginzburg–Landau equations to obtain vortex configurations, equilibrium states and the spatial distribution of the superconducting electron density in a mesoscopic superconducting triangle and long prisms with square cross-section. For a mesoscopic triangle with the magnetic field applied perpendicularly to sample plane the vortex configurations were obtained by using Langevin dynamics simulations. In most of the configurations the vortices sit close to the corners, presenting twofold or three-fold symmetry. A study of different meta-stable configurations with same number of vortices is also presented. Next, by taking into account de Gennes boundary conditions via the extrapolation length, b, we study the properties of a mesoscopic superconducting square surrounded by different metallic materials and in the presence of an external magnetic field applied perpendicularly to the square surface. It is determined the b  -limit for the occurrence of a single vortex in a mesoscopic square of area d2d2, for 4ξ(0)?d?10ξ(0)4ξ(0)?d?10ξ(0).  相似文献   

5.
Isothermal magnetization near a fishtail peak in nanocrystalline B1 NbCy encapsulated in multiwall carbon nanocages is studied within the time window of 100 < t < 4000 s. The current density J exhibits a linear logarithmic time decay. The effective activation energy Ueff increases linearly with temperature T and is independent of applied magnetic field H. The results of J(t) and Ueff (T, H) are consistent with the Anderson–Kim flux–creep model for thermally activated motion of uncorrelated vortices or vortex bundles over a net potential barrier Ueff. Ueff at a fishtail peak field Hfp evolves quickly above a fishtail peak temperature Tfp, but slowly below that temperature. The result suggests that a decrease of flux viscosity coefficient above Tfp at Hfp is the origin of the fishtail peak in nanocrystalline B1 NbCy encapsulated in multiwall carbon nanocages.  相似文献   

6.
We present results on the Hall coefficient RH in the normal state for a GdBa2Cu3O7−δ/La0.75Sr0.25MnO3 bilayer and a La0.75Sr0.25MnO3 film grown by dc magnetron sputtering on (1 0 0) SrTiO3. We find that the electric transport on the bilayer can be qualitatively described using a simple parallel layers model. The GdBa2Cu3O7−δ layer presents a carrier density approximately equal to that reported for 7 − δ = 6.85 oxygen doping. Also we observe an unexpected presence of two Hall resistivity regimes, effects that may be associated with the internal magnetic field induced on the superconducting layer by the ferromagnetic layer.  相似文献   

7.
Measurements of the a.c.susceptibility (χ=χ′+iχ″) have been made on the Mg substituted high TC superconducting system, CuBa2(MgxCa1−x)3Cu4O12−y (Cu-1234) with x=0, 0.10 & 0.20, at different values of the a.c.field amplitude. Estimates of the intergranular critical current density(JC) made from the field dependent χ″-T curves show an improvement in the Mg-substituted Cu-1234 system. Results have been analysed in the light of the crystal structure and the superconducting anisotropy factor (γab/ξc) of the Cu-1234 system. Lower superconducting anisotropy emanating from Mg substitution has been found to be significant, resulting in better superconducting properties.  相似文献   

8.
The artificial control of grain-boundary resistance and its contribution to magnetic and magneto-transport properties in [Co(3 nm)/Bi(2.5 nm)/Co(3 nm)]Ir20Mn80(12 nm) thin films that exhibit exchange bias is studied. Transverse magnetoresistance (MR) loops exhibit a negative MR in thin films grown by magnetron sputtering on Si/SiNx(100 nm) substrates. This negative MR effect is of the giant-MR (GMR) type, although its magnitude is less than 1%. A considerable exchange bias (EB) effect is observed only at lower temperatures, where both, GMR and isothermal magnetization loops exhibit a shift of −600 Oe at 5 K.  相似文献   

9.
The magnetic phase diagram for Mg1−xZnxCyNi3 has been tentatively constructed based on magnetization and muon spin relaxation (μSR) measurements. The superconducting phase was observed to fade as x (y) increases (decreases). The low y samples show early stages of long-range ferromagnetism, or complete long-range ferromagnetism. In the phase diagram, the ferromagnetic phase exists in addition to the superconducting phase, suggesting that there is some correlation between superconductivity and ferromagnetism, even though the coexistence of ferromagnetism and superconductivity is not observed from the μSR measurements down to 20 mK for the superconducting sample (Tc=2.5 K, (x, y)=(0, 0.9)).  相似文献   

10.
We present results which describe procedures of the preparation and patterning of Hg,Re-Ba-Ca-Cu-O superconducting films suitable for coplanar structures usable as possible photodetectors and for microbridges. We compare structural and electrical properties of the final films from the point of their applicability for photodetectors. Our prepared Re-doped Hg-based films on LaAlO3 substrate are continuous with a sufficient adhesion to the substrate and with a maximum zero resistance critical temperature TC0 ∼ 122 K. The X-ray diffraction of all the films confirmed the Hg-1212 phase beside the minor Hg-1223 phase and intergrowth phases in some cases. In spite of epitaxial character of the final Hg-based films, the microwave and magnetic measurements suggest a possible existence of nonstoichiometric material between the grains which we register as a presence of weak links near the transition into the superconducting state. We show some electrical properties of the prepared superconducting structures, too. The prepared coplanar structures show ultrafast photoresponse signal to incident laser pulse.  相似文献   

11.
Synthetic conditions such as stoichiometries, temperature and pressure are optimized to achieve a high quality oxygen deficient SmFeAsO0.6 superconductor. Both electric and magnetic measurements show a sharp superconducting transition at about 55 K. Several important physical parameters are deduced. The apparent superconducting gap observed in heat capacity with 2Δo/kBTc of 4.57 larger than that of previous fluorine replaced samples indicate that this superconductivity will not strongly conflict with the phonon-mediated BCS mechanism. The mean free length ?=18.8 nm and the coherent length ξ=2.3-3.3 nm show that the superconductivity is in the clean limit.  相似文献   

12.
Magnetic properties of the group II–V semiconductor CdSb single crystals doped with Ni (2 at%) are investigated. Deviation of the zero-field-cooled susceptibility, χZFC, from the field-cooled susceptibility is observed below 300 K, along with a broad maximum of χZFC (T) at Tb in fields below the anisotropy field BK∼4 kG. Tb(B) obeys the law [Tb(B)/Tb(0)]1/2=1–B/BK with Tb(0)∼100 K. The magnetization exhibits saturation above ∼20–30 kG, a weak temperature dependence and anisotropy of the saturation value Ms. The coercive field is much smaller then BK and displays anisotropy inverted with respect to that of Ms. Such magnetic behavior is expected for spheroidal Ni-rich Ni1−xSbx nanoparticles with high aspect ratio, broad distribution of the sizes and with orientations of the major axis distributed around a preferred direction.  相似文献   

13.
Molybdenum nitride Mo2Nx films were grown on MgO(0 0 1) and on α-Al2O3(0 0 1) substrates by molecular beam epitaxy under nitrogen radical irradiation. X-ray photoelectron spectroscopy revealed that the composition of the film varied in the range of Mo2N1.4-Mo2N2.8 depending on the growth temperature. The deposition at 973 K gave well-crystallized films on both substrates. The high-resolution reciprocal space mapping by X-ray diffraction showed that the nitrogen-rich γ-Mo2N crystalline phase (the composition: Mo2N1.4) was epitaxially grown on MgO at 923 K with a slight tetragonal distortion (a = 0.421 and c = 0.418 nm) to fit the MgO lattice (a = 0.421 nm). On α-Al2O3(0 0 1), nitrogen-rich γ-Mo2N (Mo2N1.8) was grown at 973 K with (1 1 1) planes parallel to the substrate surface. X-ray diffraction analysis with a multi-axes diffractometer revealed that the γ-Mo2N on α-Al2O3(0 0 1) had a slight rhombohedral distortion (a = 0.4173(2) and α = 90.46(3)°). Superconductivity was observed below 2.8-3 K for the films grown at 973 K on MgO and on α-Al2O3(0 0 1).  相似文献   

14.
The influence of annealing on the structure and magnetic properties of amorphous Co/Zr and Co/Hf multilayer films was studied with particular attention to the dependence of the magnetic properties, thermal stability and crystallization process on layer composition and thickness. The temperature at which crystallization commences increases from 400 to 460 °C as the layer thickness dZr or dHf increases from 6 to 18 Å, and decreases from 450 to 400 °C as dCo increases from 12 to 18 Å. Multilayers containing 19–60 at% Zr were studied. The specific magnetization was found to increase even below the temperature at which crystallization commences. Our data are compared with non-multilayer Co–Zr amorphous films and rapidly quenched metallic glasses.  相似文献   

15.
We report successful fabrication of Ag doped Hg:1223 films by reacting Ba2Ca2.3Cu3.3Oz(Agy): y=0, 0.02, 0.025, 0.05, 0.1 and 0.2 precursors deposited by spray pyrolysis on SrTiO3 (100) substrates, in controlled Hg+Pb ambient, in an evacuated sealed quartz tube at 820 °C for 4 h. The effects of AgNO3 addition on the superconducting properties of Hg/(Pb):1223 films are studied. The addition of low concentration of silver e.g. y≈0.025 results in a slight increase in Tc (R=0) from 125 to 126 K and the dc critical current density (Jc) decreases with the increasing Ag in Hg(Pb):1223 (Agy) films. The microstructural details exhibit the curious characteristics of spiral like features for lower concentrations of silver i.e. up to y=0.05. These improvements are believed to be due to the liberation of oxygen through the dissociation of AgNO3 at higher temperature and passivation of weak link effects through the segregation of silver at these grain boundaries. The addition of silver content y≥0.05 resulted in the decrease in transition temperature. The Jc is observed to decrease steadily with increasing Ag content. The microstructural features, e.g. spiral are also found to deteriorate with increasing silver content. The deterioration in superconducting properties at high Ag content is believed to be mainly due to the formation of Ag-Hg amalgam.  相似文献   

16.
L10-ordered FePt thin films prepared by molecular-beam epitaxy on MgO (0 0 1) substrate at 320 °C with different thickness of Pt buffer layer have been investigated. The out-of-plane coercivity increases with increasing thickness of Pt buffer. The maximum values of the long-range order parameter and uniaxial magnetic anisotropy energy are 0.72 and 1.78×107 erg/cm3, respectively, for films with 12 nm thick Pt buffer layer, where the c/a ratio (0.976) shows the minimum value. The reason for the enhancement in ordering is due to the proper lattice strains Pt buffer bestows on FePt layer, these strains are equal to the contraction in lattice parameter c and the expansion in a. Studies of angular-dependent coercivity revealed that the magnetization reversal behaviour shifts from a domain-wall motion dominated case towards a near rotational mode with increasing thickness of Pt buffer layer.  相似文献   

17.
The heavy-fermion compound URu2Si2 has mystified researchers since the superconducting state (Tc = 1.45 K) is embedded within the enigmatic ‘‘hidden order” phase (Th = 17.5 K). Here, we report charge and thermal transport measurements on ultraclean single crystals of URu2Si2 with very large residual-resistivity-ratio down to 30 m K (∼Tc/50), which reveal a number of unprecedented superconducting properties. The results provide strong evidence for a new type of unconventional superconductivity with two distinct gaps having different nodal topology. We propose a gap function with chiral d-wave form Δ(k) = Δ0kz(kx + iky). We also demonstrate that a distinct flux line lattice melting transition with outstanding characters occurs well below the upper critical fields even at sub-Kelvin temperature. The intriguing superconducting state of URu2Si2 adds a unique and exciting example to the list of unconventional superconductors.  相似文献   

18.
Single core stainless steel (SS) sheathed MgB2 tapes have been made by the powder-in-tube (PIT) method using commercial Mg and B powders in two series, one with nominal composition and the other with excess Mg. The electrical resistivity and susceptibility measurements have been carried out to evaluate residual resistivity ratio (RRR), the coherence length ξ(0) and critical current density JC(T) in these tapes. Detailed structural analysis of the core material has been carried out to correlate the superconducting properties with the crystallinity. In the optimized growth condition the MgB2 tapes exhibited an estimated JC of ∼1.4×107 A/m2 at 39.45 K in zero field and the zero temperature coherence length is found to be ∼68 Å. MgB2 tapes fabricated from starting powders having nominal Mg-composition have been shown to exhibit higher JC than those fabricated from excess magnesium composition of the starting powders. The strained lattice together with the presence of nanosized MgO inclusion having size smaller than the coherence length, are shown to be responsible for the observed higher JC.  相似文献   

19.
We discuss some of the basic theoretical aspects of current-carrying states in superconducting superlattices with tunnel barriers in the mesoscopic regime, when p0  1  a  ξ0(a is the superconducting layer thickness, p0is the Fermi momentum, ξ0is the BCS coherence length and  =  1). We establish the necessary conditions for the observation of the classical Josephson effect (with sinusoidal current–phase dependence) and derive self-consistent analytical expressions for the critical Josephson current. These expressions are proportional to the small factor a / ξ0and have unusual temperature dependence as compared with the single-junction case. For certain parameter values, the superconducting gap exhibits an exponential decrease due to pair-breaking effect of the supercurrent. The supercurrent can completely destroy the superconductivity of the system above a certain characteristic temperature T * . In this paper, we also study the effect of intrabarrier exchange interactions. We show that this effect is strongly enhanced compared with the single-junction case and can manifest itself in an exponential decrease of the critical temperature.  相似文献   

20.
We report magnetization measurements of grain-aligned Ba2Ca2Cu3O6(O,F)2 with Tc?108 K. The interlayer distance of the material is the shortest among known tri-layer superconductors. Unexpectedly, the magnetization data show that the coupling strength between CuO2 layers is rather weak. A direct reflection of the weak coupling is highly suppressed irreversibility line, i.e. a broad reversible region in H-T plane. The decoupling field obtained from the irreversibility line is less than 0.1 T, which is comparable with that of quasi two-dimensional superconductor Bi2Sr2CaCu2O8+δ. Comparison of data with the Hao-Clem model gives characteristic parameters [ξab(0) and λab(0)] and the critical fields [Hc(0) and Hc2c(0)]. A large value of penetration depth, λab(0)=240 nm reflects a small carrier concentration in CuO2 planes, and explains the reason of the weak interlayer coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号