首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on the selective area growth (SAG) of GaN nanorods on Si substrates masked with W or SiO2 and also on bare Si substrates by RF plasma-assisted molecular beam epitaxy (RF-MBE). The growth of GaN (i.e. irradiation of Ga and RF plasma-activated N2) on the W mask layer results in the appearance of a ring reflection high-energy electron diffraction (RHEED) pattern coming from α-W. In contrast, broken ring RHEED patterns from GaN nanorods are clearly observed on SiO2 and Si surfaces. Ex-situ scanning Auger microscopy analysis confirms that no growth of GaN takes place on W. Utilizing this phenomenon, we have demonstrated the SAG of GaN nanorods on Si substrates partly masked with W. We will discuss this phenomenon in terms of the difference in the desorption energy of Ga on W, SiO2, and Si.  相似文献   

2.
3.
In this article, we propose a new complementary geometrical growth mechanism, which may partially explain some of the apparent anomalies in our understanding of the growth of GaN nanocolumns by plasma-assisted molecular beam epitaxy (PA-MBE). This geometrical addition to any complete model for nanocolumn growth is based on the fact that most samples are grown using substrate rotation and it predicts an enhanced growth rate in the plane normal to the surface, i.e. vertically compared with the lateral growth rate of the columns. It also suggests a mechanism for the enhanced diffusion of gallium on the sidewalls of the columns even under strongly nitrogen-rich conditions. Finally, geometrical considerations also predict the growth of non-(0 0 0 1) oriented samples from the same mechanism. Some experimental evidence supporting this complementary geometrical model is presented.  相似文献   

4.
We have studied the low-temperature growth of gallium nitride arsenide (GaN)As layers on sapphire substrates by plasma-assisted molecular beam epitaxy. We have succeeded in achieving GaN1−xAsx alloys over a large composition range by growing the films much below the normal GaN growth temperatures with increasing the As2 flux as well as Ga:N flux ratio. We found that alloys with high As content x>0.1 are amorphous and those with x<0.1 are crystalline. Optical absorption measurements reveal a continuous gradual decrease of band gap from ∼3.4 to ∼1.35 eV with increasing As content. The energy gap reaches its minimum of ∼1.35 eV at x∼0.6–0.7. The structural, optical and electrical properties of these crystalline/amorphous GaNAs layers were investigated. For x<0.3, the composition dependence of the band gap of the GaN1−xAsx alloys follows the prediction of the band anticrossing model developed for dilute alloys. This suggests that the amorphous GaN1−xAsx alloys have short-range ordering that resembles random crystalline GaN1−xAsx alloys.  相似文献   

5.
We investigated the effect of growth parameters for obtaining high-quality AlN grown directly on sapphire substrates by a hybridized method, derived from simultaneous source supply and conventional migration-enhanced epitaxy. At an optimal growth temperature of 1200 °C, AlN was atomically smooth and pit-free, while below and above 1200 °C, AlN was rough and with pits, respectively. Surface morphologies also depended on the V/III ratio. Rough surfaces became atomically smooth but then pits appeared, as the V/III ratio increased. The crystallinity revealed by X-ray diffraction changed accordingly. The 600-nm-thick AlN grown under the optimal conditions showed X-ray line widths of as narrow as ∼43 and ∼250 arcsec for (0 0 0 2) and (1 0 1¯ 2) diffractions, respectively.  相似文献   

6.
We demonstrate hexagonal boron nitride (h-BN) epitaxial growth on Ni(1 1 1) substrate by molecular beam epitaxy (MBE) at 890 °C. Elemental boron evaporated by an electron-beam gun and active nitrogen generated by a radio-frequency (RF) plasma source were used as the group-III and -V sources, respectively. Reflection high-energy electron diffraction revealed a streaky (1×1) pattern, indicative of an atomically flat surface in the ongoing growth. Correspondingly, atomic force microscopy images exhibit atomically smooth surface of the resulting h-BN film. X-ray diffraction characterization confirmed the crystallinity of the epitaxial film to be h-BN, and its X-ray rocking curve has a full-width at half-maximum of 0.61°, which is the narrowest ever reported for h-BN thin film. The epitaxial alignments between the h-BN film and the Ni substrate were determined to be [0 0 0 1]h−BN∥[1 1 1]Ni, [1 1 2¯ 0]h−BN∥[1¯ 1 0]Ni, and [1 1¯ 0 0]h−BN∥[1¯ 1¯ 2]Ni.  相似文献   

7.
We report on the use of dimethylhydrazine (DMHy) and tertiarybuthylhydrazine (TBHy), as alternative nitrogen precursor for GaN low-temperature growth, as well as to improve the InN growth rate. Lowering the GaN growth temperature, would allow growing InN/GaN heterostructures by MOVPE, without damaging the InN layers. Increasing the low InN MOVPE growth rate is of major importance to grow reasonably thick InN layers. In this respect, triethylindium (TEIn) was also used as an alternative to trimethylindium (TMIn).  相似文献   

8.
Nitrified HfO2/Si substrate was used to grow GaN-based film with molecular beam epitaxy. Four-period InGaN/GaN layered structure and p/n junction were deposited on the nitrified HfO2/Si. X-ray photoelectron spectroscopy (XPS) result shows that N was effectively incorporated into the HfO2. The crystallographic relationship of the GaN/HfO2/Si is GaN(0 0 0 2)∥HfO2(1 1 1)∥Si(1 1 1). Temperature-dependent photoluminescence (PL), PL peak wavelength, PL peak intensity, and PL full-width at half-maximum of the p/n junction were investigated. Light-emitting diode was fabricated from the p/n junction. Red light was emitted at low voltage and yellow light was emitted when increasing the voltage.  相似文献   

9.
GaN films and AlGaN/GaN heterostructures grown on vicinal sapphire (0 0 0 1) substrates by metalorganic chemical vapor deposition (MOCVD) are investigated. It is found that surface morphologies of GaN films depend on the vicinal angle, however, they are not sensitive to the inclination directions of the substrate. The optimized vicinal angle for obtaining excellent surface morphology is around 0.5°. This conclusion is also confirmed by characterizing the electrical property of two-dimensional electron gas (2DEG) in the AlGaN/GaN heterostructure.  相似文献   

10.
Indium nitride (InN) layers were grown on (1 1 1) silicon substrates by reactive magnetron sputtering using an indium target. Atomic force microscope, X-ray diffraction, and Raman spectroscopy analysis revealed that highly c-axis preferred wurtzite InN layers with very smooth surface can be obtained on (1 1 1) silicon substrates at a substrate temperature as low as 100 °C. The results indicate that the reactive sputtering is a promising growth technique for obtaining InN layers on silicon substrates at low substrate temperature with low cost and good compatibility with microelectronic silicon-based devices.  相似文献   

11.
We fabricated one-dimensional GaN nanorods on AlN/Si (1 1 1) substrates at various temperatures, and carrier gas flow amount, using the hydride vapor phase epitaxy (HVPE) method. An AlN buffer layer of 50 nm thickness was deposited by RF sputtering for 25 min. Stalagmite-like GaN nanorods formed at a growth temperature of 650 °C. The diameters and lengths of GaN nanorods increase with growth time, whereas the density of nanorods decreases. And we performed the experiments by changing the carrier gas flow amount at a growth temperature of 650 °C and HCl:NH3 flow ratio of 1:40. GaN nanorods, with an average diameter of 50 nm, were obtained at a carrier gas flow amount of 1340 sccm. The shape, structures, and optical characteristics of the nanorods were investigated by field-emission scanning electron microscopy, X-ray diffraction, and photoluminescence.  相似文献   

12.
GaN nanorods were grown on Si (0 0 1) substrates with a native oxide layer by molecular beam epitaxy. The changes in the morphologies and their effects on the field emission characteristics of GaN nanorods were investigated by varying growth conditions, namely, growth time of low-temperature GaN buffer layer, growth time of GaN nanorods, Ga flux during growth of GaN nanorods, and growth temperature of GaN nanorods. GaN nanorods with a low aspect ratio measured by diode configuration showed better field emission characteristics than those with a high aspect ratio, which may be due to the effects of screening and the surface depletion layer. In addition, the distance between the GaN nanorods and the anode played an important role in the field emission characteristics such as turn-on field, field enhancement factor, and field distribution on the emitter surface.  相似文献   

13.
Redistribution behavior of magnesium (Mg) in the N-terminated (1 1¯ 0 1) gallium nitride (GaN) has been investigated. A nominally undoped GaN layer was grown on a heavily Mg-doped GaN template by metalorganic vapor-phase epitaxy (MOVPE). Mg dopant profiles were measured by secondary ion mass spectrometry (SIMS) analysis. A slow decay of the Mg concentration was observed in the nominally undoped GaN layer due to the surface segregation. The calculated decay lengths of the (1 1¯ 0 1) GaN are ∼75–85 nm/decade. These values are shorter than the decay length determined in the sample grown on the Ga-terminated (0 0 0 1) GaN. This result indicates that Mg exhibited weak surface segregation in the (1 1¯ 0 1) GaN as compared to the (0 0 0 1) GaN. The weak surface segregation is in agreement with the high efficiency of Mg incorporation on the (1 1¯ 0 1) face. The high density of hydrogen was obtained in the (1 1¯ 0 1) GaN, which might enhance the Mg incorporation.  相似文献   

14.
Structural properties of GaN epilayers on wet-etched protruding and recess-patterned sapphire substrates (PSSs) have been investigated in detail using high-resolution double-crystal X-ray diffraction (DCXRD) and etch-pit density methods. The DCXRD results reveal various dislocation configurations on both types of PSSs. The etch pits of GaN on the recess PSS exhibit a regular distribution, i.e. less etch pits or threading dislocation density (TDD) onto the recess area than those onto the sapphire mesas. On the contrary, an irregular distribution is observed for the etch pits of GaN on the protruding PSS. A higher crystal quality of the GaN epilayer grown onto the recess PSS can be achieved as compared with that onto the protruding PSS. These data reflect that the GaN epilayer on the recess PSS could be a better template for the second epitaxial lateral overgrowth (ELOG) of GaN. As a result, the GaN epilayers after the ELOG process display the TDDs of around ∼106 cm−2.  相似文献   

15.
A 300 μm GaN thick-film, in diameter 1.5 in, was demonstrated without any crack by hydride vapor phase epitaxy (HVPE) growth. The technique used in relaxing the residual stress caused by differences of thermal expansion coefficients (TEC) and lattice constants between GaN and sapphire substrate to prevent GaN film from crack is called a dot air-bridged structure. After the laser lift-off process, 300-μm-thick freestanding GaN wafer, in diameter 1.5 in, could be fabricated. The compressive stress in the dot air-bridged structure was measured by micro-Raman spectroscopy with the E2(high) phonon mode. The compressive stress could be reduced to as small as 0.04 GPa, which could prevent the crack during the epitaxial process for GaN growth by HVPE. It is important to obtain a large-area crack-free GaN thick-film, which can be used for fabricating freestanding GaN wafer.  相似文献   

16.
We report on the MOCVD growth of InN buffer layers on sapphire substrate for InN growth. The approach used assumes that an optimized InN buffer layer has to exhibit at least the same crystalline quality and sapphire surface coverage than the GaN buffer layers allowing to grow high crystalline quality GaN on sapphire. The buffer layers were characterized by AFM and GID measurements. Sapphire nitridation was investigated: it has a strong influence on in-plane crystalline quality. Two kinds of buffer layers were optimized according to the GaN buffer layer specifications: one of them only presented In droplets at its surface. It was shown that the small amount of In droplets increases the adatoms mobility of the main layer overgrown, leading to a 25% decrease of its in-plane mosaicity, compared to InN films directly grown on sapphire. To achieve a same improvement on InN buffer layer free of In droplets, the InN main layer growth temperature had to be increased from 550 °C. to 600 °C.  相似文献   

17.
We have obtained single-crystal aluminum nitride (AlN) layers on diamond (1 1 1) substrates by metalorganic vapor-phase epitaxy (MOVPE). When the thermal cleaning temperature of the substrate and growth temperature of the AlN layer were below 1100 °C, the AlN layer had multi-domain structures mainly consisting of rotated domains. An interface layer, consisting of amorphous carbon and poly-crystal AlN, was formed between the AlN layer and the diamond substrate. On the other hand, when the thermal cleaning temperature and growth temperature were above 1200 °C, a single-crystal AlN layer was grown and no interface layer was formed. Therefore, we attribute the multi-domain structures to the interface layer. Even at the growth temperature of 1100 °C, by performing the thermal cleaning at 1200 °C, the single-crystal AlN layer was obtained, indicating that the thermal cleaning temperature of the substrate is a critical factor for the formation of the interface layer. The epitaxial relationship between the single-crystal AlN layer and the diamond (1 1 1) substrate was determined to be [0 0 0 1]AlN∥[1 1 1]diamond and [1 0 1¯ 0]AlN∥[1 1¯ 0]diamond. The AlN surface had Al polarity and no inversion domains were observed in the AlN layer.  相似文献   

18.
AlGaN growth using epitaxial lateral overgrowth (ELO) by metalorganic chemical vapor deposition on striped Ti, evaporated GaN on sapphire, has been investigated. AlGaN/AlN films growth on GaN/AlGaN superlattices (SLs) structure on the Ti masks, with various SLs growth temperature (1030, 1060 and 1090 °C) were grown. With increasing the growth temperature, AlGaN surface became flat. The AlGaN film had a cathodoluminescence peak around 345 nm. However, in secondary ion mass spectrometry (SIMS) measurement, Ti signal was detected on the top of AlGaN surface when GaN/AlGaN SLs was grown on Ti striped masks. By inserting the AlN blocking layer on SLs, Ti diffusion was stopped at the AlN layer, and the AlGaN crystalline quality was improved.  相似文献   

19.
GaN epilayers are grown on (1 1 1) oriented single crystal diamond substrate by ammonia-source molecular beam epitaxy. Each step of the growth is monitored in situ by reflection high energy electron diffraction. It is found that a two-dimensional epitaxial wurtzite GaN film is obtained. The surface morphology is smooth: the rms roughness is as low as 1.3 nm for 2×2 μm2 scan. Photoluminescence measurements reveal pretty good optical properties. The GaN band edge is centred at 3.469 eV with a linewidth of 5 meV. These results demonstrate that GaN heteroepitaxially grown on diamond opens new rooms for high power electronic applications.  相似文献   

20.
The molecular beam epitaxy (MBE) growth of GaAs and InAs quantum dots on etched mesas has been studied using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The [0 1 1]-oriented mesas are etched into (1 0 0) GaAs substrates, exposing (5 3 3)B sidewall facets. At a substrate temperature of 610 °C a top (1 0 0) plane is seen to evolve on a ridge mesa structure. Alternatively, if the overgrowth is carried out at 630 °C no such facet is seen, and the top ridge remains unchanged during GaAs growth. By controlling the mesa shape, either ordered lines of dots can be grown or the dot density can be varied from <5×108 cm−2 to >1×1011 cm−2 on the same substrate in pre-defined regions. The dot distribution observed on the mesa sidewalls and top is discussed in terms of net migration of adatoms from different facets, underlying step density, step height and surface curvature of the mesa top.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号