首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have successfully grown bulk, single crystals of AlxGa1−xN with the Al content x ranging from 0.5 to 0.9. Samples were grown from Ga melt under high nitrogen pressure (up to 10 kbar) and at high temperature (up to 1800 °C) using a gas pressure system. The homogeneity and Al content of the crystals were investigated by X-ray diffraction and laser ablation mass spectrometry. On the basis of the high-pressure experiments, the corresponding pressure–temperature (pT) phase diagram of Al–Ga–N was derived. The bandgap of the material was determined by the femtosecond two-photon absorption autocorrelation method and is equal to 5.81±0.01 eV for the Al0.86Ga0.14N crystals.  相似文献   

2.
InxAl1−xN is a particularly useful group-III nitride alloy because by adjusting its composition it can be lattice matched to GaN. Such lattice-matched layers may find application in distributed Bragg reflectors (DBRs) and high electron mobility transistors (HEMTs). However, compared with other semiconducting nitride alloys, InxAl1-xN has not been researched extensively. In this study, thin InxAl1−xN epilayers were grown by metal-organic vapour phase epitaxy (MOVPE) on GaN and AlyGa1−yN layers. Samples were subjected to annealing at their growth temperature of 790 °C for varying lengths of time, or alternatively to a temperature ramp to 1000 °C. Their subsequent surface morphologies were analysed by atomic force microscopy (AFM). For both unstrained InxAl1−xN epilayers grown on GaN and compressively strained epilayers grown on AlyGa1−yN, surface features and fissures were seen to develop as a consequence of thermal treatment, resulting in surface roughening. It is possible that these features are caused by the loss of In-rich material formed on spinodal decomposition. Additionally, trends seen in the strained InxAl1−xN layers may suggest that the presence of biaxial strain stabilises the alloy by suppressing the spinode and shifting it to higher indium compositions.  相似文献   

3.
The models for calculation of phase diagrams of semiconductor thin films with different substrates were proposed by considering the contributions of strain energy, the self-energy of misfit dislocations and surface energy to Gibbs free energy. The phase diagrams of the AlxIn1−xAs and AsxSb1−xAl thin films grown on the InP (1 0 0) substrate, and the AlxIn1−xSb thin films grown on the InSb (1 0 0) substrate at various thicknesses were calculated. The calculated results indicate that when the thickness of film is less than 1 μm, the strain-induced zinc-blende phase appears, the region of this phase extends with decreasing of the layer thickness, and there is small effect of surface energies of liquid and solid phases on the phase diagrams.  相似文献   

4.
Optical and structural properties of tensile strained graded GaxIn1−xP buffers grown on GaAs substrate have been studied by photoluminescence, X-ray diffraction, atomic force microscopy, and scanning electron microscopy measurements. The Ga composition in the graded buffer layers was varied from x=0.51 (lattice matched to GaAs) to x=0.66 (1% lattice mismatch to GaAs). The optimal growth temperature for the graded buffer layer was found to be about 80–100 °C lower than that for the lattice matched GaInP growth. The photoluminescence intensity and surface smoothness of the Ga0.66In0.34P layer grown on top of the graded buffer were strongly enhanced by temperature optimization. The relaxation of tensile GaInP was found to be highly anisotropic. A 1.5 μm thick graded buffer led to a 92% average relaxation and a room temperature photoluminescence peak wavelength of 596 nm.  相似文献   

5.
We present MOVPE-grown, high-quality AlxGa1−x N layers with Al content up to x=0.65 on Si (1 1 1) substrates. Crack-free layers with smooth surface and low defect density are obtained with optimized AlN-based seeding and buffer layers. High-temperature AlN seeding layers and (low temperature (LT)/high temperature (HT)) AlN-based superlattices (SLs) as buffer layers are efficient in reducing the dislocation density and in-plane residual strain. The crystalline quality of AlxGa1−xN was characterized by high-resolution X-ray diffraction (XRD). With optimized AlN-based seeding and SL buffer layers, best ω-FWHMs of the (0 0 0 2) reflection of 540 and 1400 arcsec for the (1 0 1¯ 0) reflection were achieved for a ∼1-μm-thick Al0.1Ga0.9N layer and 1010 and 1560 arcsec for the (0 0 0 2) and (1 0 1¯ 0) reflection of a ∼500-nm-thick Al0.65Ga0.35N layer. AFM and FE-SEM measurements were used to study the surface morphology and TEM cross-section measurements to determine the dislocation behaviour. With a high crystalline quality and good optical properties, AlxGa1−x N layers can be applied to grow electronic and optoelectronic device structures on silicon substrates in further investigations.  相似文献   

6.
We propose a new growth scheme of digitally alloyed modulated precursor flow epitaxial growth (DA-MPEG) using metalorganic and hydride precursors for the growth of AlxGa1−xN layers with high-Al content at relatively low temperatures. The growth of high-quality, high-Al content AlxGa1−xN layers (xAl>50%) that are composed of AlN and AlyGa1−yN monolayers on AlN/sapphire template/substrates by DA-MPEG was demonstrated. The overall composition of the ternary AlxGa1−xN material by DA-MPEG can be controlled continuously by adjusting the Column III mole fraction of the atomic AlyGa1−yN sub-layer. X-ray diffraction and optical transmittance results show that the AlGaN materials have good crystalline quality. The surface morphology of DA-MPEG AlGaN samples measured by atomic force microscopy are comparable to high-temperature-grown AlGaN and are free from surface features such as nano-pits.  相似文献   

7.
The processes as in title of relaxation of the lattice mismatch and the recovery of crystalline quality in thick AlxGa1−xN on high-temperature-grown AlN were investigated. When x=0.3, rapid lattice relaxation occurred over a few microns, then the crystalline quality gradually recovered over 10 μm. In contrast, when x=0.7, relaxation of the lattice mismatch gradually occurred over 5 μm.  相似文献   

8.
Al0.3Ga0.7As/In1−xGaxP structures were prepared by low-pressure MOVPE. Lattice matched and strained ones with top In1−xGaxP layers as well as reverse ones with top Al0,3Ga0,7As layers were examined. The structures were studied by photoluminescence, X-ray and atomic force microscope (AFM) methods. An additional photoluminescence peak from the Al0.3Ga0.7As/In1−xGaxP interface was observed in our samples and it was attributed to a type-II band offset. A conduction band offset of 0.121 eV was measured in the Al0.3Ga0.7As/In0.485Ga0.515P lattice-matched structure and a linear dependence of the conduction band offset on In1−xGaxP composition, with a zero offset in the Al0.3Ga0.7As/In0.315Ga0.685P structure, was determined. The valence band discontinuity had a nearly constant value of 0.152 eV.  相似文献   

9.
The thermodynamic properties of the Al–Ga–N2 system under high N2 pressure up to 10 kbar and 1800 °C are investigated. On the basis of the experimental p–T growth conditions for (Al,Ga)N crystals, the standard Gibbs free energy as well as the standard enthalpy and entropy of formation of the AlxGa1−xN crystals as a function of composition x were calculated. The aN2–T and x–T phase diagrams for (Al,Ga)N are presented.  相似文献   

10.
Recently it has been discovered that when growing AlxGa1−xN on low-defect-density bulk AlN substrates pseudomorphic layers can be achieved with a thickness far exceeding the critical thickness as given by the Matthews and Blakeslee model. For instance, the critical thickness of an AlxGa1−xN layer (with x=0.6) is about 40 nm thick. However we have been able to grow layers with this composition that are pseudomorphic with a thickness exceeding the critical thickness by more than an order of magnitude. This work defines the limits of pseudomorphic growth on low defect density, bulk AlN substrates to obtain low defect density, high-power UV LEDs.  相似文献   

11.
The recent results on the growth of the AlxGa1−xN bulk single crystals (0.22≤x≤0.91) from solution in liquid Ga under high nitrogen pressure are discussed. We focus on the influence of temperature and the choice of the Al source on the crystal growth. The experiments involving different sources of aluminum such as Al metal, pre-reacted polycrystalline AlyGa1−yN and AlN powder are compared. The best results were achieved using pre-reacted polycrystalline AlyGa1−yN or/and AlN. Single-crystal structure refinement data of these AlxGa1−xN crystals are presented. We also update the p–T phase diagram of (Al,Ga)N compound at high N2 pressure for various Al content, which is the basis for (Al,Ga)N synthesis.  相似文献   

12.
We have performed a detailed investigation of the photoluminescence features taken at 2 K on a series of GaxIn1−xN alloys grown by metal-organic vapour-phase epitaxy through the whole composition range. The evolution of the photoluminescence lineshape of GaInN alloys in the indium-rich region is dominated by doping effects rather than by band-gap tailing effects correlated to existence of random chemical crystal inhomogeneities. The lineshape of the photoluminescence indicates a residual electron concentration of about 1018–1019 cm−3 in the bulk part of the epilayers. The value we get for the bowing parameter is b=2.8 eV.  相似文献   

13.
The local structure of Ge and Ga ions in (1 − x)(Ge0.25Ga0.10S0.65)-xCsBr glasses (x = 0.00, 0.05, 0.10 and 0.12) were investigated using extended X-ray absorption fine structure (EXAFS) spectroscopy. CsBr formed [GaS3/2Br] structural units in glass while Ge ions remained in GeS4/2 tetrahedra, unaffected by CsBr addition. Rare-earth ions can be surrounded by Br ions only when CsBr/Ga ratio in glass became larger than unity.  相似文献   

14.
The thermal stability of ∼200-nm-thick InGaN thin films on GaN was investigated using isothermal and isochronal post-growth anneals. The InxGa1−xN films (x=0.08–0.18) were annealed in N2 at 600–1000 °C for 15–60 min, and the resulting film degradation was monitored using X-ray diffraction (XRD) and photoluminescence (PL) measurements. As expected, films with higher indium concentration showed more evidence for decomposition than the samples with lower indium concentration. Also for each alloy composition, decreases in the PL intensity were observed starting at much lower temperatures compared to decreases in the XRD intensity. This difference in sensitivity of the PL and XRD techniques to the InGaN decomposition suggest that defects that quench luminescence are generated prior to the onset of structural decomposition. For the higher indium concentration films, the bulk decomposition proceeds by forming metallic indium and gallium regions as observed by XRD. For the 18% indium concentration film, measurement of the temperature-dependent InGaN decomposition yields an activation energy, EA, of 0.87±0.07 eV, which is similar to the EA for bulk InN decomposition. The InGaN integrated XRD signal of the 18% film displays an exponential decrease vs. time, implying InGaN decomposition proceeds via a first-order reaction mechanism.  相似文献   

15.
High quality, straight GaN nanowires (NWs) with diameters of 50 nm and lengths up to 3 μm have been grown on Si(0 0 1) using Au as a catalyst and the direct reaction of Ga with NH3 and N2:H2 at 900 °C. These exhibited intense, near band edge photoluminescence at 3.42 eV in comparison to GaN NWs with non-uniform diameters obtained under a flow of Ar:NH3, which showed much weaker band edge emission due to strong non-radiative recombination. A significantly higher yield of β-Ga2O3 NWs with diameters of ≤50 nm and lengths up to 10 μm were obtained, however, via the reaction of Ga with residual O2 under a flow of Ar alone. The growth of GaN NWs depends critically on the temperature, pressure and flows in decreasing order of importance but also the availability of reactive species of Ga and N. A growth mechanism is proposed whereby H2 dissociates on the Au nanoparticles and reacts with Ga giving GaxHy thereby promoting one-dimensional (1D) growth via its reaction with dissociated NH3 near or at the top of the GaN NWs while suppressing at the same time the formation of an underlying amorphous layer. The higher yield and longer β-Ga2O3 NWs grow by the vapor liquid solid mechanism that occurs much more efficiently than nitridation.  相似文献   

16.
We have demonstrated InxGa1−xN epitaxial growth with InN mole fractions of x=0.07 to 0.17 on an m-plane ZnO substrate by metalorganic vapor phase epitaxy for the first time. The crystalline quality of the epilayers was found to be much higher than that of epilayers grown on a GaN template on an m-plane SiC substrate.  相似文献   

17.
GaAs, InAs and Ga1?xInxAs layers were grown by chemical beam epitaxy (CBE) using triethylgallium, trimethylindium and tertiarybutylarsine as precursors for Ga, In and As, respectively. The growth rate during the homoepitaxial growth of GaAs and InAs, deduced from the frequency of reflection high-energy electron diffraction intensity oscillations, was used to calibrate the incorporation rates for the III elements. The In content of the Ga1?xInxAs layers was measured by Rutherford backscattering spectrometry and compared with the value predicted from the above calibration data; while the measured In mole fraction is close to the predicted value for the samples grown for low In to Ga flux ratios (x<0.2), the In incorporation is enhanced for larger values of this ratio. The results obtained on layers grown at different substrate temperatures show that In mole fraction is almost constant at growth temperatures in the range 400–500 °C, but a strong dependence on the substrate temperature has been found outside this range. The above results, not observed for samples grown by solid source molecular beam epitaxy, indicate that some interaction between Ga and In precursors at the sample surface could take place during the growth by CBE.  相似文献   

18.
GaN nanodots (NDs) are obtained by Ga metallic droplet formation on Si (1 1 1) substrates followed by their nitridation. The size and density of Ga droplets and GaN NDs can be controlled by varying the growth temperature within the range 514–640 °C. Atomic force microscopy (AFM) investigation of Ga droplets shows an increase in the average diameter with temperature. The average diameter of GaN NDs increases with growth temperature while their density decreases more than one order of magnitude. In addition, the formation of a GaN crystallite rough layer on Si, in-between NDs, indicates that a spreading mechanism takes place during the nitridation process. High-resolution transmission electron microscopy (HRTEM) is used for the investigation of shape, crystalline quality and surface distribution of GaN dots. X-ray photoelectron spectroscopy (XPS) results confirm that Ga droplets that are transformed into GaN NDs spread over the sample surface during nitridation.  相似文献   

19.
First-principles molecular dynamics (MD) simulations are performed to study the structure and dynamics of liquid Al1−xSix (x = 0.0, 0.12, 0.2, 0.4, 0.6, 0.8) at the temperature of 1573 K. The composition dependence of static structure factors, pair correlation functions, and diffusion constants are investigated. We found that the structure of the liquid Al1−xSix alloys is strongly dependent on the composition. From our simulation and analysis, we can see that although liquid Al1−xSix is metallic, there are some degrees of covalent tetrahedral short-range order in the liquid. The degree of tetrahedral short-range order increases linearly as the Si concentration in the liquid increased. The diffusion coefficients of both Al and Si atoms in liquid Al1−xSix alloys at 1573 K are not very sensitive to the composition.  相似文献   

20.
In the present paper, the effect of carbon on the microstructural evolution of Zr66.7−xNi33.3Cx (x = 0, 1, 3) alloys during mechanical alloying has been investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that these three alloys undergo similar amorphization and crystallization processes, and the final milling product is a metastable fcc-Zr66.7−xNi33.3Cx phase. The carbon addition can shorten the milling time for the complete amorphization reaction and enhance the stability of the formed amorphous alloy, which can suppress the mechanically induced amorphous-crystalline phase transformation with further increasing milling time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号