首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Mg-doping efficiency in GaN layers grown by molecular-beam epitaxy has been studied as a function of the growth temperature, the growth rate, and the Mg beam flux. The Mg cell temperature window for efficient p-type doping is rather narrow, being limited by the GaN n-type background doping density (lower limit) and by the Mg surface coverage that, beyond a threshold, induces a layer polarity inversion (N-polarity), leading to a reduction of the Mg incorporation (upper limit). An increase of the growth temperature avoids this polarity inversion, but the Mg flux must be increased to compensate the strong desorption rate. Thus, a trade-off between both temperatures has to be reached. A reduction of the growth rate has a strong effect on the p-type doping level, yielding up to 7×1017 holes/cm3 for a total Mg concentration of 1×1019 cm−3. This high Mg concentration does not seem to generate Mg-related defects or deep traps.  相似文献   

2.
The deposition mechanism of boron doping in CVD silicon epitaxy has been investigated by exposing silicon substrates to B2H6 H2 doping gas mixtures at epitaxy temperatures and examining the effect by dopant profile measuring in an afterwards intrinsically in-situ deposited epitaxial silicon layer. It has been shown that boron is deposited increasing its concentration on the surface linearly with prolonged exposition time and desorbed by purging the surface in pure hydrogen. In the latter case its content decreases linearly proportional to the predeposited concentration. The desorbed boron builds up a secondary doping source which maintains a parasitic boron flow for reincorporation during following layer growth.  相似文献   

3.
A modified theoretical model of dopant incorporation is discussed, while comparing it with the Reif-Dutton model. In contrast to the Reif-Dutton model, which has been based on the adsorption step of dopant substances, the modified model is related to the real dopant incorporation step and its backreaction as the rate controlling factors. By that a thermodynamical decomposition equilibrium of the dopant source material may be established without being influenced by the dopant incorporation. Each component of the decomposition equilibrium acts as a source for making dopant atoms available for incorporation. Equivalent to the Reif-Dutton model the modified model describes the growth rate influence of the layer on the incorporation of dopants and additionally enables the temperature dependence, total pressure dependence and the specific features of dopant incorporation at high concentrations to be explained.  相似文献   

4.
突破高质量、高效金刚石掺杂技术是实现高性能金刚石功率电子器件的前提。本文利用微波等离子体化学气相沉积(MPCVD)法,以三甲基硼为掺杂源,制备出表面粗糙度0.35 nm,XRD(004)摇摆曲线半峰全宽28.4 arcsec,拉曼光谱半峰全宽3.05 cm-1的高质量硼掺杂单晶金刚石。通过改变气体组分中硼元素的含量,实现了1016~1020 cm-3的p型金刚石可控掺杂工艺。随后,研究了硼碳比、生长温度、甲烷浓度等工艺条件对p型金刚石电学特性的影响,结果表明:在硼碳比20×10-6、生长温度1 100 ℃、甲烷浓度8%、腔压160 mbar(1 mbar=100 Pa)时p型金刚石迁移率达到207 cm2/(V·s)。通过加氧生长可以提升硼掺杂金刚石结晶质量,降低杂质散射。当氧气浓度为0.8%时,样品空穴迁移率提升至 614 cm2/(V·s)。  相似文献   

5.
The present paper informs about thermodynamic calculations of the B Cl H system, carried out irrespective of data, already published by other authors. It further deals with recent experimental results on silicon doping with boron in the presence of hydrogen chloride, the layer growth rate being varied. Finally the possibility of quantitatively interpreting the suppressing influence of hydrogen chloride on the doping of silicon with boron is discussed.  相似文献   

6.
Doping results from Ar+-laser-assisted chemical beam epitaxy with triethylgallium, tris(dimethylamino) arsenic and silicon tetrabromide as group-III, group-V and dopant precursors, respectively, are reported. Enhancements in the n-type doping concentration are observed with laser irradiation in the investigated substrate-temperature range 390 – 500°C. With a 300 W/cm2 irradiation power density, an increase in the carrier concentration by 70 times is obtained at 390°C substrate temperature. A numerical model developed by us for epitaxial growth and doping with the above precursors is used to assess the contribution of laser-induced thermal heating to the observed doping increase. A reaction scheme for photo-induced decomposition of physisorbed silicon tetrabromide is proposed. A kinetic rate equation for the photolysis is derived and used to estimate the absorption cross section required to reproduce the observed concentration enhancements resulted from laser irradiation. The possibility is established that dramatic increases in carrier concentration at low growth temperatures are due to photolysis of physisorbed silicon tetrabromide.  相似文献   

7.
Poly silicon deposition by pyrolysis of silane under low pressure conditions has been investigated with respect to the influence of temperature when simultaneously in-situ doping of the deposited layer takes place. The growth rate of poly silicon is retarded in the presence of phosphine provided that a certain lower PH3/SiH4-ratio has been exceeded. It has been shown how that lower ratio depends on temperature. Increasing PH3/SiH4-ratio not only slows down layer growth rate but also the apparent activation energy of the layer forming reaction. An empirical equation describing the temperature dependence of that activation energy has been derived. Phosphine adsorption has been discussed as a cause of both layer growth rate and activation energy reduction. Additionally, incorporation of phosphorus during layer growth has been investigated with respect to the total amount and the electrically active concentration, the latter measured after a postdeposition anneal at 1000 °C.  相似文献   

8.
Various doping mechanisms discussed in recent literature are applied to the theoretical concept derived in the previously published Part II of the paper, whereby a variety of hypothetical laws of dopant incorporation is revealed. Those laws cannot be distinguished from each other by doping experiments, but are testable, at least in principle. When substituting three doping-process-relevant empirical constants, all of them might be changed into that single empirical, but theory-aided model equation, which enables apitaxial layer doping to be described as a result of intended variations of the main process parameters: partial pressure of the dopant source, layer growth rate, total pressure, and deposition temperature.  相似文献   

9.
Tetraethylsilane (TeESi) and bis(ethylcyclopentadienyl)Mg (ECp2Mg) were employed as Si and Mg dopant precursors for MOVPE growth of n-type and p-type GaN films, respectively. In Si doping, the electron concentration was observed to increase with the increase of the TeESi flow rate. The temperature dependence of the Hall mobility showed good agreement with n-type GaN films grown using different dopant precursors (SiH4, GeH4, Si2H6). The donor activation energy was estimated to be 27 meV, which is almost the same as the literature values. In Mg doping, we also found that the Mg concentration increases as the ECp2Mg flow rate increases. All of Mg-doped samples in this study showed p-type conduction after annealing. The acceptor activation energy was estimated to be 170 meV, which was close to the reported values.  相似文献   

10.
An in-process monitoring and control method of the doping gas concentration during epitaxial growth of Si was developed. A flame photometric detector (FPD) can be used as a monitor for the PH3 and B2H6 dopant concentrations in the injected doping gases. A combination of this dopant monitor with an automatic control system of the silicon source (SiHCl3) gas concentration using an infrared spectrophotometer as a monitor, makes possible an automatic in-process control of the concentrations of dopant and of silicon source gas supplied to the reactor. The present system provides an accurate and reproducible control of impurity concentrations in Si epitaxial layers. Good correlation between the monitored signal (or the doping gas concentration) and the impurity concentration incorporated into the growth layers was confirmed for PH3 (n-type) and B2H6 (p-type) doping. For the B2H6 doping, a divergence from the linear relationship between the doping gas concentration and the impurity concentration in the layers was observed in the level of acceptor concentration below about 1015 atoms/cm3. The transient response of the present system was measured by growing epitaxial layers with increasing and decreasing step-changes in the dopant gas flow during continuous deposition of the layers. Some interesting, but complicated, transient responses of impurity concentration in the growth layer were observed. The responses are different between the PH3 doping and the B2H6 doping, and also different between increasing and decreasing steps especially for the B2H6 doping.  相似文献   

11.
Doped amorphous silicon films were prepared by plasma-enhanced chemical vapour deposition of silane and hydrogen mixtures, using phosphorus pentafluoride (PF5) and boron trifluoride (BF3) as dopant precursors. The films were studied by UV-vis spectroscopy and their photo and dark conductivity were measured, the latter as a function of temperature. The optical gap of the n-type samples, doped with PF5, diminished as the concentration of this gas in the plasma was increased. However, the optical gap of p-type samples, doped with BF3, did not show any appreciable optical gap decrease as the concentration of BF3 was varied from 0.04% to 4.7%. The dark conductivity of the p-type films at these extremes of the doping range were 7.6 × 10−10 and 3.5 × 10−1 Ω−1 cm−1, respectively.  相似文献   

12.
In the SiH4-HCl-AsH3-H2 system of depositing epitaxial silicon doped with arsenic an equilibrium-like doping process has been obtained by way of experiments not only as a limiting case at high deposition temperatures, as had been shown formerly, but also in the range of lower temperatures when the layer growth rate falls below a critical value. By means of introducing the term of a critical rate the theory of dopant incorporation, published in the Parts I–IV of the present report, has been extended to full completeness.  相似文献   

13.
After a brief overview of different epitaxial layer growth techniques, the homoepitaxial chemical vapour deposition (CVD) of SiC with a focus on hot-wall CVD is reviewed. Step-controlled epitaxy and site competition epitaxy have been utilized to grow polytype stable layers more than 50 μm in thickness and of high purity and crystalline perfection for power devices. The influence of growth parameters including gas flow, C/Si ratio, growth temperature and pressure on growth rate and layer uniformity in thickness and doping are discussed. Background doping levels as low as 1014 cm−3 have been achieved as well as layers doped over a wide n-type (nitrogen) and p-type (aluminium) range.

Furthermore the status of numerical process simulation is mentioned and SiC substrate preparation is described. In order to get flat and damage free epi-ready surfaces, they are prepared by different methods and characterised by atomic force microscopy and by scanning electron microscope using channelling patterns. For the investigation of defects in SiC high purity CVD layers are grown. The improvement of the quality of bulk crystal substrates by micropipe healing and so-called dislocation stop layers can further decrease the defect density and thus increase the yield and performance of devices. Due to its high growth rate functionality and scope for the use of multi-wafer equipment hot-wall CVD has become a well-established method in SiC-technology and has therefore great industrial potential.  相似文献   


14.
Nitrogen-doped ZnO films were deposited on silicon (1 0 0) substrate using zinc acetate and ammonium acetate aqueous solution as precursors by ultrasonic spray pyrolysis. Successful p-type doping can be realized at optimized substrate temperature. The p-type ZnO films show excellent electrical properties such as hole concentration of 1018 cm−3, hole mobility of 102 cm2 V−1 s−1 and resistivity of 10−2 Ω cm. In the photoluminescence measurement, a strong near-band-edge emission was observed, while the deep-level emission was almost undetectable in both undoped and N-doped ZnO films. The growth and doping mechanism of N-doped ZnO films were discussed.  相似文献   

15.
利用高纯度的硼粉和硫粉,在1 300℃的高温真空环境下,通过扩散装置制备出硼(B)、硫(S)共掺杂单晶金刚石。扫描电子显微镜、X射线能谱、拉曼光谱等测试结果表明,随着两种元素的掺入,金刚石的形貌和晶体质量发生变化。掺杂后的金刚石形貌复杂,蚀坑和沟壑内部形貌呈阶梯状,随着掺杂量的增加出现断层,并在蚀坑处检测出较高的硼原子和硫原子含量,掺杂B-S质量比为0.5的金刚石蚀坑处的硼原子和硫原子含量最高。随着杂质原子的渗入,拉曼半峰全宽值增大,金刚石的晶体质量下降。室温下进行霍尔检测结果表明,掺杂后的金刚石电阻率降低。B-S质量比为1和2的样品导电类型表现为p型;B-S质量比为0.5时,样品的霍尔系数为负值,导电类型为n型。  相似文献   

16.
The effect of dopants on the crystal growth and the microstructure of poly-crystalline silicon (poly-Si) thin film grown by metal induced lateral crystallization (MILC) method was intensively investigated. PH3 and B2H6 were used as source gases in ion mass doping (IMD) process to make n-type and p-type semiconductor respectively. It was revealed that the microstructure of MILC region varies significantly as the doping type of the samples varied from intrinsic to n-type and p-type, which was investigated by field emission (FE)-SEM. The microstructure of MILC region of the intrinsic was bi-directional needle network structure whose crystal structure has a (1 1 0) preferred orientation. For p-type doped sample, the microstructure of MILC region was revealed to become unidirectional parallel growth structure more and more as MILC growth proceed, which was led by unidirectional division of needlelike grain at the front of MILC region. And for n-type doped sample, the microstructure was random-directional needlelike growth structure. These phenomena can be explained by an original model of Ni ion and Ni vacancy hopping in the NiSi2 phase and its interface at the front of MILC region.  相似文献   

17.
G. Jeschke  M. Kroschel  M. Jansen   《Journal of Non》1999,260(3):216-227
The amorphous networks Si3B3N7 and ‘SiBN3C' are studied by solid-state nuclear magnetic resonance (NMR), continuous-wave and pulse electron paramagnetic resonance (EPR), and by one- and two-dimensional electron nuclear double resonance spectroscopy. In both compounds, boron is found to be coordinated exclusively by nitrogen with close to trigonal planar geometry and close to equal bond lengths. Silicon is four-coordinated by nitrogen with the coordination tetrahedra being distorted to accommodate the coordination preferences of boron. REDOR measurements demonstrate that boron resides in the second coordination sphere of silicon. Carbon incorporation into the Si–B–N network does not lead to any observable changes in NMR parameters including the average dipolar coupling between 11B nuclei which depends on the average distance of the boron atoms. Only spin–lattice relaxation of the nuclei is accelerated due to the generation of paramagnetic centers. The unpaired electrons appear to be delocalized over several carbon atoms and exhibit significant hyperfine couplings to boron, silicon, nitrogen, and some residual protons. In contrast to electron spectroscopic imaging experiments, the magnetic resonance results suggest formation of carbon clusters.  相似文献   

18.
In the growth of silicon layers on various substrates it appears that the growth rate is not uniquely determined by substrate temperature and input parameters of the gases used. An analysis of this situation is given and essential points in the chain reaction of steps in the growth process will be indicated. Differences in growth rate reported for different experimental situations can be explained on the basis of this analysis where the temperature gradient normal to the growing interface will appear to be of special importance. Some examples are given of resulting surface morphology as a function of growth and etch conditions. Another point of interest in the growth process is the incorporation of dopant which determines the electrical properties of the layers. Here also equilibrium and kinetics show an interplay. For low growth rates there appears to be a good correlation between the concentration of impurities in the solid and the partial pressure of dopant in the gas phase. For growth rates exceeding a critical-value kinetic effects can be expected as those found in liquid phase epitaxy. It appears that an n-type dopant as phosphorus shows this effect. In this case the surface concentration of ionized donors exceeds the bulk concentration of these centres and trapping occurs at higher growth rates.  相似文献   

19.
A consequent application of dopant incorporation theory to epitaxial silicon layer growth above buried layer regions explains the formation of an exponentially decaying dopant profile not only above that buried layer but also beyond of it. Taking into account desorption of dopants only and and neglecting readsorption of dopants on buried layer regions allows one to describe both vertical redistribution autodoping and lateral autodoping by the well known exponential expression that originally has been derived by Reif et al. in order to describe intended non-steady state doping behaviour and later applied to lateral autodoping by Wong and Reif. Doping incorporation theory also explains the formation of a near-equilibrium surface coverage with adsorbed dopants outside of buried layer during a preepitaxial baking process. Different dopant sources contributing to autodoping are characterized by different time constants. In this connection the adsorbed layer model derived by Tabe and Nakamura could be related to the action of two different dopant sources of autodoping where one of the two is characterized by a time constant being nearly infinite in number.  相似文献   

20.
本工作采用甚高频等离子体化学气相沉积(VHF-PECVD)技术制备了P型微晶硅氧窗口层薄膜,讨论了P型微晶硅氧的光电特性随硼烷掺杂率的变化.采用紫外-可见透射光谱,拉曼光谱,傅立叶变换红外吸收光谱(FTIR),暗电导测量对薄膜的光电特性进行了表征.结果表明,P型微晶硅氧材料均表现为微晶态,随着硼烷掺杂率增加,晶化程度逐步降低,暗电导率快速减小,光学带隙持续降低.该结果可归因于硼烷掺杂的增加抑制晶化使得非晶成分增多,有效掺杂率降低导致薄膜电导率下降,另一方面,对硅氧物相分离的阻碍作用导致薄膜带隙下降.硼烷掺杂率为0.4;样品的电导率高达0.158 S/cm且光学带隙为2.2 eV,兼具高透射性和良好电导率,可作为高效硅基太阳电池的窗口层.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号