首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Deposition of SrTiO3 (STO) thin films by ultra-high vacuum rf magnetron sputtering was performed in order to produce high-quality STO/p-Si (1 0 0) interfaces and STO insulator layers with high dielectric constants. The deposition temperatures were in the range from room temperature to 550 °C. Capacitance-voltage (C-V) and conductance-frequency measurements showed that the dielectric constant of the films ranges from 55 to 120. C-V measurements on Al/STO/p-Si structures clearly revealed the creation of metal-insulator-semiconductor diodes. The interface state densities (Dit) at the STO/p-Si interfaces were obtained from admittance spectroscopy measurements. The samples deposited at lower temperatures revealed values of Dit between 2×1011 and 3.5×1012 eV−1 cm−2 while the higher temperature deposited samples had a higher Dit ranging between 1×1011 and 1×1013 eV−1 cm−2. The above results were also well correlated to X-ray diffraction measurements, Rutherford backscattering spectroscopy, and spectroscopic ellipsometry.  相似文献   

2.
Cobalt ferrite (CoFe2O4) thin film is epitaxially grown on (0 0 1) SrTiO3 (STO) by laser molecular beam epitaxy (LMBE). The growth modes of CoFe2O4 (CFO) film are found to be sensitive to laser repetition, the transitions from layer-by-layer mode to Stranski–Krastanov (SK) mode and then to island mode occur at the laser repetition of 3 and 5 Hz at 700 °C, respectively. The X-ray diffraction (XRD) results show that the CFO film on (0 0 1) SrTiO3 is compressively strained by the underlying substrate and exhibits high crystallinity with a full-width at half-maximum of 0.86°. Microstructural studies indicate that the as-deposited CFO film is c-oriented island structure with rough surface morphology and the magnetic measurements reveal that the compressive strained CoFe2O4 film exhibits an enhanced out-of-plane magnetization (190 emu/cm3) with a large coercivity (3.8 kOe).  相似文献   

3.
GaN thin films have been grown on Si(1 1 1) substrates using an atomic layer deposition (ALD)-grown Al2O3 interlayer. This thin Al2O3 layer reduces strain in the subsequent GaN layer, leading to lower defect densities and improved material quality compared to GaN thin films grown by the same process on bare Si. XRD ω-scans showed a full width at half maximum (FWHM) of 549 arcsec for GaN grown on bare Si and a FWHM as low as 378 arcsec for GaN grown on Si using the ALD-grown Al2O3 interlayer. Raman spectroscopy was used to study the strain in these films in more detail, with the shift of the E2(high) mode showing a clear dependence of strain on Al2O3 interlayer thickness. This dependence of strain on Al2O3 thickness was also observed via the redshift of the near bandedge emission in room temperature photoluminescence (RT-PL) spectroscopy. The reduction in strain results in a significant reduction in both crack density and screw dislocation density compared to similar films grown on bare Si. Screw dislocation density of the films grown on Al2O3/Si substrates approaches that of typical GaN layers on sapphire. This work shows great promise for the use of oxide interlayers for growth of GaN-based LEDs on Si.  相似文献   

4.
E.A. El-Sayad 《Journal of Non》2008,354(32):3806-3811
Thin films of Sb2Se3−xSx solid solutions (x = 0, 1, 2, and 3) were deposited by thermal evaporation of presynthesized materials on glass substrates held at room temperature. The films compositions were confirmed by using energy dispersive analysis of X-rays (EDAX). X-ray diffraction studies revealed that all the as-deposited films as well as those annealed at Ta < 423 K have amorphous phase. The optical constants (n, k) and the thickness (t) of the films were determined from optical transmittance data, in the spectral range 500-2500 nm, using the Swanepoel method. The dispersion parameters were determined from the analysis of the refractive index. An analysis of the optical absorption spectra revealed an Urbach’s tail in the low absorption region, while in the high absorption region an indirect band gap characterizes the films with different compositions. It was found that the optical band gap energy increases quadratically as the S content increases.  相似文献   

5.
Fe0.8Ga0.2 films were deposited on bulk single-crystal (0 0 1) 0.69PMN-0.31PT substrates by DC magnetron sputtering to make magnetoelectric bilayer composites. Films deposited at temperatures below 600 °C were X-ray amorphous. Films deposited at temperatures of 600 °C and higher exhibited a single-crystal (0 0 1) disordered BCC structure. The crystalline FeGa films demonstrate a 45° twisted cube-on-cube epitaxial relationship with the PMN–PT substrates. Heterostructures with an X-ray amorphous FeGa film exhibited zero magnetoelectric response. Heterostructures with a 990 nm epitaxial FeGa film exhibited a large inverse magnetoelectric voltage coefficient of 13.4 (G cm)/V.  相似文献   

6.
Al2O3 and ZrO2 mixtures for gate dielectrics have been investigated as replacements for silicon dioxide aiming to reduce the gate leakage current and reliability in future CMOS devices. Al2O3 and ZrO2 films were deposited by atomic layer chemical vapor deposition (ALCVD) on HF dipped silicon wafers. The growth behavior has been characterized structurally and electrically. ALCVD growth of ZrO2 on a hydrogen terminated silicon surface yields films with deteriorated electrical properties due to the uncontrolled formation of interfacial oxide while decent interfaces are obtained in the case of Al2O3. Another concern with respect to reliability aspects is the relatively low crystallization temperature of amorphous high-k materials deposited by ALCVD. In order to maintain the amorphous structure at high temperatures needed for dopant activation in the source drain regions of CMOS devices, binary Al/Zr compounds and laminated stacks of thin Al2O3 and ZrO2 films were deposited. X-ray diffraction and transmission electron microscope analysis show that the crystallization temperature can be increased dramatically by using a mixed oxide approach. Electrical characterization shows orders of leakage current reduction at 1.1-1.7 nm of equivalent oxide thickness. The permittivity of the deposited films is determined by combining quantum mechanically corrected capacitance voltage measurements with structural analysis by transmission electron microscope, X-ray reflectivity, Rutherford backscattering, X-ray photoelectron spectroscopy, and inductively coupled plasma optical emission spectroscopy. The k-values are discussed with respect to formation of interfacial oxide and possible silicate formation.  相似文献   

7.
We report on growth-mode transitions in the growth of SrRuO3 thin films on atomically flat Ti4+ single-terminated SrTiO3 (1 1 1) substrates, investigated by reflection high-energy electron diffraction and atomic force microscopy. Over the first ~9 unit cells, the dominant growth mode changes from island to layer-by-layer for the growth rate of 0.074 unit cells/s and the growth temperature of 700 °C. Moreover, in the course of growing SrRuO3 films, the governing growth mode of interest can be manipulated by changing the growth temperature and the growth rate, which change allows for the selection of the desired layer-by-layer mode. The present study thus paves the way for integrations of SrRuO3 thin layers into (1 1 1)-orientated oxide heterostructures, and hence multi-functional devices, requiring control of the sharp atomic-level interfaces and the layer-by-layer growth mode.  相似文献   

8.
Epitaxial thin films of TmFeCuO4 with a two-dimensional triangular lattice structure were successfully grown on yttria-stabilized-zirconia substrates by pulsed laser deposition and ex situ annealing in air. The films as-deposited below 500 °C showed no TmFeCuO4 phase and the subsequent annealing resulted in the decomposition of film components. On the other hand, as-grown films deposited at 800 °C showed an amorphous nature. Thermal annealing converted the amorphous films into highly (0 0 1)-oriented epitaxial films. The results of scanning electron microscopic analysis suggest that the crystal growth process during thermal annealing is dominated by the regrowth of non-uniformly shaped islands to the distinct uniform islands of hexagonal base.  相似文献   

9.
Hydrogenated carbon nitride (a-CN:H) films were deposited on n-type (1 0 0) silicon substrates making use of direct current radio frequency plasma enhanced chemical vapor deposition (DC-RF-PECVD), using a gas mixture of CH4 and N2 as the source gas in range of N2/CH4 flow ratio from 1/3 to 3/1 (sccm). The deposition rate, composition and bonding structure of the a-CN:H films were characterized by means of X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectrometry (FTIR). The mechanical properties of the deposited films were evaluated using nano-indentation test. It was found that the parameter for the DC-RF-PECVD process had significant effects on the growth rate, structure and properties of the deposited films. The deposition rate of the films decreased clearly, while the N/C ratio in the films increased with increasing N2/CH4 flow ratio. CN radicals were remarkably formed in the deposited films at different N2/CH4 flow ratio, and their contents are related to the nitrogen concentrations in the deposited films. Moreover, the hardness and Young’s modulus of the a-CN:H films sharply increased at first with increasing N2/CH4 flow ratio, then dramatically decreased with further increase of the N2/CH4 flow ratio, and the a-CN:H film deposited at 1/1 had the maximum hardness and Young’s modulus. In addition, the structural transformation from sp3-like to sp2-like carbon-nitrogen network in the deposited films also was revealed.  相似文献   

10.
Amorphous alumina-titania (Al2O3-TiO2) films were prepared on silicon substrates by low-pressure chemical vapor deposition (CVD) using a mixture of aluminum tri-sec-butoxide (ATSB) and titanium tetrachloride (TiCl4) at different CO2/H2 inputs (the ATSB/TiCl4/CO2/H2 system). The films had increased Al contents at higher temperatures and CO2/H2 inputs. The `splotchy' deposits were observed. The higher compressive internal stress at higher temperature was attributed to the films with a thinner thickness. Higher compressive internal stress and more Al-O bonding resulted in higher specific critical load. Films deposited at low temperature of 350 °C have a defected structure and a higher dielectric property, due to the non-stoichiometric nature at the Ti-rich composition. Resistivity decreased from 1011 to 108-109 Ω cm after annealing. Breakdown voltages increased slightly with substrate temperature and were in the range of 2.3-6.4 MV/cm. Refractive indices were in the range of 1.71-2.28. Greater than 60% transmittance was observed at visible range for all films.  相似文献   

11.
T. Serin  N. Serin  H. Sar?  O. Pakma 《Journal of Non》2006,352(3):209-215
This study investigated the effect of the substrate temperature on the structural, optical, morphological, and electrical properties of undoped SnO2 films prepared by a spray deposition method. The films were deposited at various substrate temperatures ranging from 300-500 °C in steps of 50 °C and characterized by different optical and structural techniques. X-ray diffraction studies showed that the crystallite size and preferential growth directions of the films were dependent on the substrate temperature. These studies also indicated that the films were amorphous at 300 °C and polycrystalline at the other substrate temperatures used. Infrared and visible spectroscopic studies revealed that a strong vibration band, characteristic of the SnO2 stretching mode, was present around 630 cm−1 and that the optical transmittance in the visible region varied over the range 75-95% with substrate temperature, respectively. The films deposited at 400 °C exhibited the highest electrical conductivity property.  相似文献   

12.
Effects of relaxation of interfacial misfit strain and non-stoichiometry on surface morphology and surface and interfacial structures of epitaxial SrTiO3 (STO) thin films on (0 0 1) Si during initial growth by molecular beam epitaxy (MBE) were investigated. In situ reflection high-energy electron diffraction (RHEED) in combination with X-ray diffraction (XRD), atomic force microscopy (AFM), X-ray photoelectron spectrometry (XPS) and transmission electron microscopy (TEM) techniques were employed. Relaxation of the interfacial misfit strain between STO and Si as measured by in situ RHEED indicates initial growth is not pseudomorphic, and the interfacial misfit strain is relaxed during and immediately after the first monolayer (ML) deposition. The interfacial strain up to 15 ML results from thermal mismatch strain rather than lattice mismatch strain. Stoichiometry of STO affects not only surface morphology but interfacial structure. We have identified a nanoscale Sr4Ti3O10 second phase at the STO/Si interface in a Sr-rich film.  相似文献   

13.
The models for calculation of phase diagrams of semiconductor thin films with different substrates were proposed by considering the contributions of strain energy, the self-energy of misfit dislocations and surface energy to Gibbs free energy. The phase diagrams of the AlxIn1−xAs and AsxSb1−xAl thin films grown on the InP (1 0 0) substrate, and the AlxIn1−xSb thin films grown on the InSb (1 0 0) substrate at various thicknesses were calculated. The calculated results indicate that when the thickness of film is less than 1 μm, the strain-induced zinc-blende phase appears, the region of this phase extends with decreasing of the layer thickness, and there is small effect of surface energies of liquid and solid phases on the phase diagrams.  相似文献   

14.
Critical current density under magnetic fields has been improved by the introduction of artificial pinning centers. Nanorods in REBa2Cu3Oy films are significantly effective as c-axis-correlated pinning centers. However, nanorods sometimes tilt from the c-axis direction of superconducting films. To understand the mechanism of nanorod tilting, ErBa2Cu3Oy films containing Ba(Nb0.5Er0.5)O3 (BNO) nanorods were deposited on a SrTiO3 single crystal with a vicinal surface. Microstructures of the nanorods were examined by transmission electron microscopy (TEM). As a result, it was found that BNO nanorods grew diagonally from steps of the substrate surface in cross-sectional TEM images. The mechanism of the diagonal growth of nanorods can be explained by the segregation coefficient.  相似文献   

15.
Epitaxial (La0.07Sr0.93)SnO3 [LSSO] films were deposited on CaF2 substrates by pulse laser deposition. The (1 0 0)c orientation of LSSO films was observed only on (1 1 0)CaF2, whereas (1 1 0)c orientation was found on (1 1 1)CaF2 and (1 0 0)CaF2. (0 0 1) polar axis oriented tetragonal Pb(Zr0.35Ti0.65)O3 films were grown on the fabricated (1 0 0)cLSSO∥(1 1 0)CaF2 by pulsed metal organic chemical vapor deposition. The (0 0 1)Pb(Zr0.35Ti0.65)O3∥(1 0 0)cLSSO∥(1 1 0)CaF2 stack structure exhibited about 70% transparency with an adsorption edge of approximately 330 nm.  相似文献   

16.
Ta2O5, Ta-Nb-O, Zr-Al-Nb-O, and Zr-Al-O mixture films or solid solutions were grown on Si(1 0 0) substrates at 300 °C by atomic layer deposition. The equivalent oxide thickness of Ta2O5 based capacitors was between 1 and 3 nm. In Zr-Al-O films, the high permittivity of ZrO2 was combined with high resistivity of Al2O3 layers. The permittivity, surface roughness and interface charge density increased with the Zr content and the equivalent oxide thickness was between 2.0 and 2.5 nm. In the Zr-Al-Nb-O films the equivalent oxide thickness remained at 1.8-2.0 nm.  相似文献   

17.
Gd2O3-doped CeO2 (Gd0.1Ce0.9O1.95, GDC) thin films were synthesized on (1 0 0) Si single crystal substrates by a reactive radio frequency magnetron sputtering technique. Structures and surface morphologies were characterized by X-ray diffraction (XRD), Atomic Force Microscopy (AFM) and one-dimensional power spectral density (1DPSD) analysis. The XRD patterns indicated that, in the temperature range of 200–700 °C, f.c.c. structured GDC thin films were formed with growth orientations varying with temperature—random growth at 200 °C, (2 2 0) textures at 300–600 °C and (1 1 1) texture at 700 °C. GDC film synthesized at 200 °C had the smoothest surface with roughness of Rrms=0.973 nm. Its 1DPSD plot was characterized with a constant part at the low frequencies and a part at the high frequencies that could be fitted by the f−2.4 power law decay. Such surface feature and scaling behavior were probably caused by the high deposition rate and random growth in the GDC film at this temperature. At higher temperatures (300–700 °C), however, an intermediate frequency slope (−γ2≈−2) appeared in the 1DPSD plots between the low frequency constant part and the high frequency part fitted by f−4 power law decay, which indicated a roughing mechanism dominated by crystallographic orientation growth that caused much rougher surfaces in GDC films (Rrms>4 nm).  相似文献   

18.
Single crystals of β-SiC were prepared on Si substrates at a temperature around 1390°C with the standard conditions: H2 ≈ 1 1/min, SiCl4≈3 ml/min, C3H8≈1 ml/min, deposition period≈10 min. The dependences of the growth rate and the crystallinity on the substrate temperature were studied. By detailed reflection electron diffraction analyses, the crystallinity of β-SiC with 1 μm thickness was found to be better for the layer on the (100) and (110)Si substrates than for that on the (111)Si substrate. An activation energy of 25kcal/mole was obtained for the formation of β-SiC. Optimum conditions to obtain thicker β-SiC films are discussed.  相似文献   

19.
We report on the selective area growth (SAG) of GaN nanorods on Si substrates masked with W or SiO2 and also on bare Si substrates by RF plasma-assisted molecular beam epitaxy (RF-MBE). The growth of GaN (i.e. irradiation of Ga and RF plasma-activated N2) on the W mask layer results in the appearance of a ring reflection high-energy electron diffraction (RHEED) pattern coming from α-W. In contrast, broken ring RHEED patterns from GaN nanorods are clearly observed on SiO2 and Si surfaces. Ex-situ scanning Auger microscopy analysis confirms that no growth of GaN takes place on W. Utilizing this phenomenon, we have demonstrated the SAG of GaN nanorods on Si substrates partly masked with W. We will discuss this phenomenon in terms of the difference in the desorption energy of Ga on W, SiO2, and Si.  相似文献   

20.
We have prepared (1 1 1)-oriented Si layers on SiO2 (fused silica) substrates from amorphous-Si(a-Si)/Al or Al/a-Si stacked layers using an aluminum-induced crystallization (AIC) method. The X-ray diffraction (XRD) intensity from the (1 1 1) planes of Si was found to depend significantly on growth conditions such as the thicknesses of Si and Al, deposition order (a-Si/Al or Al/a-Si on SiO2), deposition technique (sputtering or vacuum evaporation) and exposure time of the Al layer to air before the deposition of Si. The crystal orientation of the Si layers was confirmed by θ−2θ, 2θ XRD and electron backscatter diffraction (EBSD). The photoresponse properties of semiconducting BaSi2 films formed on the (1 1 1)-oriented Si layers by the AIC method were measured at room temperature. Photocurrents were clearly observed for photon energies greater than 1.25 eV. The external quantum efficiencies of the BaSi2 were also evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号