首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An interesting recent development in the Group III nitrides is the growth of InAlN lattice matched to GaN, with applications in distributed Bragg reflectors (DBRs), high electron mobility transistors (HEMTs) and as etch-layers. This work presents a systematic study of the effects of changing the key growth conditions of ammonia flux and growth temperature in InAlN growth by metal-organic vapour phase epitaxy (MOPVE) and describes our current optimised parameter set. We also particularly concentrate on the details of surface morphology assessed by atomic force microscopy (AFM). The nanoscale surfaces are characterised by low hillocks and dislocation pits, while at a larger scale microscopic indium droplets are also present. However, these droplets are eliminated when the layers are capped with GaN. Other trends observed are that increasing the growth temperature will lower the indium incorporation approximately linearly at a rate of approximately 0.25% per °C, and that increasing the ammonia flux from 44.6 to 178.6 mmol min−1 increased the indium incorporation, but further increases to 446 mmol min−1 did not result in any further increase.  相似文献   

2.
In this work, we report the growth of smooth, high-quality N-face GaN on c-plane sapphire by metalorganic chemical vapor deposition. It is found that the nitridation temperature of sapphire has a critical effect on the surface morphology of N-face GaN. Sapphire after a severe nitridation gives rise to a high density of hexagonal hillocks during N-face GaN growth. Smooth N-face GaN has been grown on appropriately nitridized sapphire. The N-polarity of the GaN film has been confirmed with no inversion domain by convergent beam electron diffraction. Controlled growth interruption is carried out to study the nucleation evolution during N-face GaN growth, which is found distinctly different from the two-step growth of Ga-face GaN. Atomically smooth N-face GaN has been achieved with comparable structural quality to Ga-face GaN.  相似文献   

3.
4.
We have prepared (1 1 1)-oriented Si layers on SiO2 (fused silica) substrates from amorphous-Si(a-Si)/Al or Al/a-Si stacked layers using an aluminum-induced crystallization (AIC) method. The X-ray diffraction (XRD) intensity from the (1 1 1) planes of Si was found to depend significantly on growth conditions such as the thicknesses of Si and Al, deposition order (a-Si/Al or Al/a-Si on SiO2), deposition technique (sputtering or vacuum evaporation) and exposure time of the Al layer to air before the deposition of Si. The crystal orientation of the Si layers was confirmed by θ−2θ, 2θ XRD and electron backscatter diffraction (EBSD). The photoresponse properties of semiconducting BaSi2 films formed on the (1 1 1)-oriented Si layers by the AIC method were measured at room temperature. Photocurrents were clearly observed for photon energies greater than 1.25 eV. The external quantum efficiencies of the BaSi2 were also evaluated.  相似文献   

5.
This paper reports a study of the effect of NH3 flow rate on m-plane GaN growth on m-plane SiC with an AlN buffer layer. It is found that a reduced NH3 flow rate during m-plane GaN growth can greatly improve the recovery of in situ optical reflectance and the surface morphology, and narrow down the on-axis (1 0 1¯ 0) X-ray rocking curve (XRC) measured along the in-plane a-axis. The surface striation along the in-plane a-axis, a result of GaN island coalescence along the in-plane c-axis, strongly depends on the NH3 flow rate, an observation consistent with our recent study of kinetic Wulff plots. The pronounced broadening of the (1 0 1¯ 0) XRC measured along the c-axis is attributed to the limited lateral coherence length of GaN domains along the c-axis, due to the presence of a high density of basal-plane stacking faults, most of which are formed at the GaN/AlN interface, according to transmission electron microscopy.  相似文献   

6.
Thin films of about 1μm Titanium Aluminum Nitride (TiAlN) were deposited onto mild steel substrates by reactive direct current (DC) magnetron sputtering using a target consisting of equal segments of titanium and aluminum. X‐ray diffraction (XRD) analysis showed that the TiAlN phase had preferred orientations along 111 and 200 with the face‐centered cubic structure. Scanning Electron Microscope (SEM) and Atomic Force Microscope (AFM) analyses indicated that the films were uniform and compact. Photoluminescence (PL) spectra reveal that TiAlN thin films are of good optical quality. Laser Raman studies revealed the presence of characteristic peaks of TiAlN at 312.5, 675, and 1187.5 cm–1. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
We present MOVPE-grown, high-quality AlxGa1−x N layers with Al content up to x=0.65 on Si (1 1 1) substrates. Crack-free layers with smooth surface and low defect density are obtained with optimized AlN-based seeding and buffer layers. High-temperature AlN seeding layers and (low temperature (LT)/high temperature (HT)) AlN-based superlattices (SLs) as buffer layers are efficient in reducing the dislocation density and in-plane residual strain. The crystalline quality of AlxGa1−xN was characterized by high-resolution X-ray diffraction (XRD). With optimized AlN-based seeding and SL buffer layers, best ω-FWHMs of the (0 0 0 2) reflection of 540 and 1400 arcsec for the (1 0 1¯ 0) reflection were achieved for a ∼1-μm-thick Al0.1Ga0.9N layer and 1010 and 1560 arcsec for the (0 0 0 2) and (1 0 1¯ 0) reflection of a ∼500-nm-thick Al0.65Ga0.35N layer. AFM and FE-SEM measurements were used to study the surface morphology and TEM cross-section measurements to determine the dislocation behaviour. With a high crystalline quality and good optical properties, AlxGa1−x N layers can be applied to grow electronic and optoelectronic device structures on silicon substrates in further investigations.  相似文献   

8.
The effects of the reaction temperature in the first stage TI on the formation and the luminescent property of both the seed and the grown particles were investigated in the region from 1050 to 1200 °C for the two-stage vapor-phase synthesis of GaN particles. The reaction efficiency of vaporized Ga and NH3 to form the seed particles increased with increasing TI up to about 1150 °C, where the maximum value of about 70% was obtained. Further raising TI caused a decrease of the efficiency. The X-ray diffraction and the photoluminescence (PL) measurements indicated both of the crystal quality and the luminescent property of the seed particle were improved with increasing TI. On the other hand, the PL intensity of the particles grown on the seed in the second stage decreased with increasing TI. This difference in the dependence was explained in terms of the morphology of the grown particles. The mechanism of particle formation during these processes was also discussed based on the results.  相似文献   

9.
A crack-free aluminum nitride (AlN) template layer was grown on a (0 0 0 1) sapphire substrate at 1450 °C using a thin (100 nm) protective AlN layer grown at 1065 °C by hydride vapor-phase epitaxy (HVPE). Full-width at half-maximum (FWHM) values of X-ray rocking curves (XRCs) for (0 0 0 2) and (1 0 1¯ 0) planes of the AlN layer were 378 and 580 arcsec, respectively. The formation of voids was observed at the interface between the thin protective AlN layer and the sapphire substrate due to decomposition reaction of sapphire during heating up to 1450 °C. The voids relaxed the tensile stress in the AlN layer, which resulted in the suppression of cracks.  相似文献   

10.
ZnO epitaxial layers with treated low-temperature (LT) ZnO buffer layers were grown by plasma-assisted molecular beam epitaxy (PA-MBE) on p-type Si (1 0 0) substrates. The LT-ZnO buffer layers were treated by thermal annealing in O2 plasma with various radio frequency (RF) power ranging from 100 to 300 W before the ZnO epilayers growth. Atomic force microscopy (AFM), high-resolution X-ray diffraction (HR-XRD), and room-temperature (RT) photoluminescence (PL) were carried out to investigate their structural and optical properties. The surface roughness measured by AFM was improved from 2.71 to 0.59 nm. The full-width at half-maximum (FWHM) of the rocking curve observed for ZnO (0 0 2) XRD and photoluminescence of the ZnO epilayers was decreased from 0.24° to 0.18° and from 232 to 133 meV, respectively. The intensity of the XRD rocking curve and the PL emission peak were increased. The XRD intensity ratio of the ZnO (0 0 2) to Si substrates and PL intensity ratio of the near-band edge emissions (NBEE) to the deep-level emissions (DLE) as a function of the RF power was increased from 0.166 to 0.467 and from 2.54 to 4.01, respectively. These results imply that the structural and optical properties of ZnO epilayers were improved by the treatment process.  相似文献   

11.
In the present paper, the devitrification kinetics of silica powder heat-treated in air and in nitrogen were investigated. The heat-treated powders were confirmed to partially crystallize into cristobalite by X-ray diffraction analysis. The devitrification kinetics data of silica powder fitted the Avrami equation very well. The measured value of n was ascertained to be 1.63 and 1.60 when the silica powder was heat-treated in air and in nitrogen, respectively, corresponding to activation energies of 408 kJ/mol and 529 kJ/mol, respectively. The effect of phenolic resin-derived carbon on crystallization of silica powder was also studied. By adding phenolic resin into silica powder, the devitrification of silica powder was fully restrained up to 1500 °C in flowing nitrogen. High concentrations of oxygen vacancies may retard the nucleation of cristobalite on the surface of silica powder. Phenolic resin-derived pyrolysis carbon restrained the nucleation of cristobalite, because it prevented the reactions of oxygen vacancies with H2O and O2 molecules.  相似文献   

12.
The effect of the off-cut angle of an r-plane sapphire substrate has been investigated on the growth of a-plane AlN thick layer by low-pressure hydride vapor phase epitaxy (LP-HVPE). The off-cut angle (θ) was changed from +5.0° (close to c-axis) to −5.0° (close to m-axis). Results show that the crystalline quality and surface morphology are very sensitive to the sign of θ off-angle. The plus θ off-angle is found to be dramatically reduce the full-widths at half-maximum (FWHM) of X-ray rocking curves (XRC), compared with the minus θ off-angle. In-plane FWHM anisotropic feature marked as M- or W-shape dependence on azimuth angle was observed for a-plane AlN. The shape and degree of anisotropy depend on the sign of θ off-angle, while the plus of θ off-angle will leads to the W-shape and the decreased anisotropy. The minimum crystal tilts and twists of the films are observed for the vicinal sapphires with the plus off-angles of +0.2° to +1.0°.  相似文献   

13.
A 4–6 μm thick a-plane (1 1 2¯ 0) AlN was grown on r-plane sapphire substrate by low-pressure hydride vapor phase epitaxy (LP-HVPE), using a direct growth without any nitridation and buffer layer, a single-step nitridation growth, a two-step nitridation growth and a two-step buffer growth method. For the two-step buffer growth procedure, smoother surface is observed with the lower full widths at half maximum (FWHM) of X-ray rocking curves (XRC) compared with the other two kinds of nitridation procedures. A smaller FWHM of in-plane XRC peak anisotropy features are reversed, which is consistent with the smaller in-plane stress anisotropic distribution in a-plane AlN, when the two-step nitridation or buffer growth method is used. In four kinds of initial growth procedures, the two-step buffer method is the suitable method for the growth of a-plane AlN by HVPE with the high crystal quality and more isotropic distribution.  相似文献   

14.
Fe0.8Ga0.2 films were deposited on bulk single-crystal (0 0 1) 0.69PMN-0.31PT substrates by DC magnetron sputtering to make magnetoelectric bilayer composites. Films deposited at temperatures below 600 °C were X-ray amorphous. Films deposited at temperatures of 600 °C and higher exhibited a single-crystal (0 0 1) disordered BCC structure. The crystalline FeGa films demonstrate a 45° twisted cube-on-cube epitaxial relationship with the PMN–PT substrates. Heterostructures with an X-ray amorphous FeGa film exhibited zero magnetoelectric response. Heterostructures with a 990 nm epitaxial FeGa film exhibited a large inverse magnetoelectric voltage coefficient of 13.4 (G cm)/V.  相似文献   

15.
We have studied in reduced pressure chemical vapor deposition the growth kinetics of Si and Si0.8Ge0.2 on bulk Si(0 0 1) and on silicon-on-insulator (145 nm buried oxide/20 nm Si over-layer) substrates. For this, we have grown at 650 °C, 20 Torr 19 periods (Si0.8Ge0.2 19 nm/Si 32 nm) superlattices on both types of substrates that we have studied in secondary ion mass spectrometry, X-ray diffraction and cross-sectional transmission electron microscopy. The Si and SiGe growth rates together with the Ge content are steady on bulk Si(0 0 1), with mean values around 9.5 nm min−1 and 20.2%, respectively. In contrast, growth rates decrease from ∼9.5 nm min−1 down to values around 7.0 nm min−1 (SiGe) and 6.3 nm min−1 (Si), when the deposited thickness on SOI increases from 0 up to slightly more than 100 nm. They then go back up to values around 8.8–9.0 nm min−1 as the thickness increases from 100 up to 400 nm. They then slowly decrease to values around 8.4–8.6 nm min−1 as the thickness increases from 400 up to 800 nm. The Ge concentration follows on SOI exactly the opposite trend: an increase from 19.9% (0 nm) up to 20.6% (∼100 nm) followed by a decrease to values around 20.1% (400 nm) then a slow re-increase up to 20.4% (800 nm). These fluctuations are most likely due to the following SOI surface temperature variations: from 650 °C down to 638 °C (100 nm), back up to 648 °C (400 nm) followed by a slow decrease to 646 °C (800 nm). These data curves will be most useful to grow on conventional SOI substrates large number of periods, regular Si/Si0.8Ge0.2 superlattices that will serve as the core of multi-channel or three-dimensional nano-wires field effect transistors.  相似文献   

16.
Si homo-epitaxial growth by low-temperature reduced pressure chemical vapor deposition (RPCVD) using trisilane (Si3H8) has been investigated. The CVD growth of Si films from trisilane and silane on Si substrates are compared at temperatures between 500 and 950 °C. It is demonstrated that trisilane efficiency increases versus silane's one as the surface temperature decreases. Si epilayers from trisilane, with low surface roughness, are achieved at 600 and 550 °C with a growth rate equal to 12.4 and 4.3 nm min−1, respectively. It is also shown that Si1−xGex layers can be deposited using trisilane chemistry.  相似文献   

17.
In this work results of extensive characterization of homoepitaxial layers grown on truly bulk ammonothermal gallium nitride (GaN) substrates are presented. The 2-μm-thick layers were deposited using metalorganic chemical vapor deposition. The photoluminescence (PL) and reflectance results show very intensive, perfectly resolved excitonic structure in range of band-edge emission of gallium nitride. This structure consists of both lines related to free excitons emission and very narrow lines (full-width at half-maximum (FWHM) value of the order of 0.3 meV) related with excitons bound to neutral acceptor and different neutral donors. In high excitation condition the biexciton emission was observed. The luminescence is uniform in the whole sample surface range. High PL homogeneity corresponds with structural and microscopic measurements performed on these layers. It proves that ammonothermal GaN substrates with perfect crystalline properties enable to grow excellent quality, strain-free homoepitaxial layers.  相似文献   

18.
Nonpolar (1 1 2¯ 0) and semipolar (1 1 2¯ 2) GaN films were grown on sapphire by metalorganic vapour phase epitaxy using ScN interlayers of varying thicknesses. A 5 nm interlayer reduced basal plane stacking fault (BSF) densities in nonpolar films by a factor of 2 and threading dislocation (TD) densities by a factor of 100 to (1.8±0.2)×109 cm−2. An 8.5 nm interlayer reduced BSF densities in semipolar films by a factor of 5 and reduced TD densities by a factor of 200 to (1.5±0.3)×108 cm−2. Nonpolar film surface roughnesses were reduced by a factor of 20.  相似文献   

19.
La2Zr2O7 (LZO) films have been grown by metalorganic decomposition (MOD) to be used as buffer layers for coated conductors. A characteristic feature of LZO thin films deposited by MOD is the formation of nanovoids in an almost single crystal structure of LZO pyrochlore phase. Annealing parameters (heating ramp, temperature, pressure, etc.) were varied to establish their influence on the microstructure of the LZO layers. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used for sample characterization. The epitaxial pyrochlore phase was obtained for annealing temperatures higher than 850 °C whatever the other annealing conditions. However, the film microstructure, in particular, nanovoids shape and size, is strongly dependent on heating ramp and pressure during annealing. When using low heating ramp, percolation of voids creates diffusion channels for oxygen which are detrimental for the substrate protection during coated conductor fabrication. From this point of view high heating rates are more adapted to the growth of LZO layers.  相似文献   

20.
The nucleation and growth of titanium dioxide (TiO2) and zinc oxide (ZnO) thin films on Fe2O3 (hematite), Al2O3 (α-alumina) and SiO2 (α-quartz) are studied by molecular dynamics simulations. The results show the formation of a strong interface region between the substrate and the film in the six systems studied here. A combination of polycrystalline and amorphous phases are observed in the TiO2 films grown on the three substrates. ZnO deposition on the Fe2O3 and Al2O3 crystals yields a monocrystalline film growth. The ZnO film deposited on the SiO2 crystal exhibits less crystallinity. The simulation results are compared with experimental results available in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号