首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epitaxial thin films of TmFeCuO4 with a two-dimensional triangular lattice structure were successfully grown on yttria-stabilized-zirconia substrates by pulsed laser deposition and ex situ annealing in air. The films as-deposited below 500 °C showed no TmFeCuO4 phase and the subsequent annealing resulted in the decomposition of film components. On the other hand, as-grown films deposited at 800 °C showed an amorphous nature. Thermal annealing converted the amorphous films into highly (0 0 1)-oriented epitaxial films. The results of scanning electron microscopic analysis suggest that the crystal growth process during thermal annealing is dominated by the regrowth of non-uniformly shaped islands to the distinct uniform islands of hexagonal base.  相似文献   

2.
SnO2 films have been deposited on Y-stabilized ZrO2 (YSZ) (1 0 0) substrates at different substrate temperatures (500–800 °C) by metalorganic chemical vapor deposition (MOCVD). Structural, electrical and optical properties of the films have been investigated. The films deposited at 500 and 600 °C are epitaxial SnO2 films with orthorhombic columbite structure, and the HRTEM analysis shows a clear epitaxial relationship of columbite SnO2(1 0 0)||YSZ(1 0 0). The films deposited at 700 and 800 °C have mixed-phase structures of rutile and columbite SnO2. The carrier concentration of the films is in the range from 1.15×1019 to 2.68×1019 cm−3, and the resistivity is from 2.48×10−2 to 1.16×10−2 Ω cm. The absolute average transmittance of the films in the visible range exceeds 90%. The band gap of the obtained SnO2 films is about 3.75–3.87 eV.  相似文献   

3.
T. Serin  N. Serin  H. Sar?  O. Pakma 《Journal of Non》2006,352(3):209-215
This study investigated the effect of the substrate temperature on the structural, optical, morphological, and electrical properties of undoped SnO2 films prepared by a spray deposition method. The films were deposited at various substrate temperatures ranging from 300-500 °C in steps of 50 °C and characterized by different optical and structural techniques. X-ray diffraction studies showed that the crystallite size and preferential growth directions of the films were dependent on the substrate temperature. These studies also indicated that the films were amorphous at 300 °C and polycrystalline at the other substrate temperatures used. Infrared and visible spectroscopic studies revealed that a strong vibration band, characteristic of the SnO2 stretching mode, was present around 630 cm−1 and that the optical transmittance in the visible region varied over the range 75-95% with substrate temperature, respectively. The films deposited at 400 °C exhibited the highest electrical conductivity property.  相似文献   

4.
Zr0.6Al0.4O1.8 dielectric films were deposited directly on strained SiGe substrates at room temperature by ultra-high vacuum electron-beam evaporation (UHV-EBE) and then annealed in N2 under various temperatures. X-ray diffraction (XRD) reveals that the onset crystallization temperature of the Zr0.6Al0.4O1.8 film is about 900 °C, 400 °C higher than that of pure ZrO2. The amorphous Zr0.6Al0.4O1.8 film with a physical thickness of ∼12 nm and an amorphous interfacial layer (IL) with a physical thickness of ∼3 nm have been observed by high-resolution transmission electron microscopy (HRTEM). In addition, it is demonstrated there is no undesirable amorphous phase separation during annealing at temperatures below and equal to 800 °C in the Zr0.6Al0.4O1.8 film. The chemical composition of the Zr0.6Al0.4O1.8 film has been studied using secondary ion mass spectroscopy (SIMS).  相似文献   

5.
GaN films were grown by metal organic chemical vapor deposition on TaC substrates that were created by pulsed laser deposition of TaC onto (0 0 0 1) SiC substrates at ∼1000 °C. This was done to determine if good quality TaC films could be grown, and if good quality GaN films could be grown on this closely lattice matched to GaN, conductive material. This was done by depositing the TaC on on-axis and 3° or 8° off-axis (0 0 0 1) SiC at temperatures ranging from 950 to 1200 °C, and examining them using X-ray diffraction, scanning electron microscopy, atomic force microscopy, and transmission electron microscopy. The GaN films were grown on as-deposited TaC films, and films annealed at 1200, 1400, or 1600 °C, and examined using the same techniques. The TaC films were polycrystalline with a slight (1 1 1) texture, and the grains were ∼200 nm in diameter. Films grown on-axis were found to be of higher quality than those grown on off-axis substrates, but the latter could be improved to a comparable quality by annealing them at 1200–1600 °C for 30 min. TaC films deposited at temperatures above 1000 °C were found to react with the SiC. GaN films could be deposited onto the TaC when the surface was nitrided with NH3 for 3 min at 1100 °C and the low temperature buffer layer was AlN. However, the GaN did not nucleate easily on the TaC film, and the crystallites did not have the desired (0 0 0 1) preferred orientation. They were ∼10 times larger than those typically seen in films grown on SiC or sapphire. Also the etch pit concentration in the GaN films grown on the TaC was more than 2 orders of magnitude less than it was for growth on the SiC.  相似文献   

6.
We report the effect of annealing on the properties of amorphous hydrogenated silicon carbide thin films. The samples were deposited onto different substrates by plasma enhanced chemical vapor deposition at temperatures between 300 and 350 °C. The gaseous mixture was formed by silane and methane, at the ‘silane starving plasma regime’, and diluted with hydrogen. Rutherford backscattering and Fourier transform infrared spectrometry were used, respectively, to determine the atomic composition and chemical bonds of the samples. The film’s structure was analyzed by means of X-ray absorption fine structure and X-ray diffraction. For temperatures higher than 600 °C, amorphous silicon carbide films annealed under inert atmosphere (Ar or N2) clearly changed their structural and compositional properties due to carbon loss and oxidation, caused by the presence of some oxygen in the annealing system. At 1000 °C, crystallization of the films becomes evident but only stoichiometric films deposited on single crystalline Si[1 0 0] substrates presented epitaxial formation of SiC crystals, showing that the crystallization process is substrate dependent. Films annealed in high-vacuum also changed their structural properties for annealing temperatures higher than 600 °C, but no traces of oxidation were observed or variations in their silicon or carbon content. At 1200 °C the stoichiometric films are fully polycrystalline, showing the existence of only a SiC phase. The XANES signal of samples deposited onto different substrates and annealed under high-vacuum also show that crystallization is highly substrate dependent.  相似文献   

7.
I. Sieber  I. Urban 《Journal of Non》2007,353(26):2550-2556
We investigated epitaxial silicon films deposited on differently oriented substrates by pulsed magnetron sputtering at temperatures of 500-550 °C. Our scanning and transmission electron microscopic as well as electron backscattering investigations show that epitaxial films grow not only on (1 0 0)-oriented substrates, but also on (2 1 0)-, (4 1 1)- and (3 1 1)-oriented ones. A change to the (1 0 0) orientation is found for the growth on (1 1 1)- , (3 2 1)- and close to (1 1 0)-oriented substrates. For these orientations transmission electron microscopic investigations show stacking faults, microtwins and small amorphous inclusions in a region starting at the substrate-film interface up to thicknesses of 150-200 nm. With increasing film thickness above 200 nm the crystalline perfection of the epitaxial layers improves.  相似文献   

8.
The MgO (2 0 0) surface is widely used as a substrate for epitaxial growth of superconducting and ferro-electric films. Highly oriented, single crystalline, extremely flat and transparent MgO films have been successfully deposited on quartz substrates by the chemical spray pyrolysis technique using economically viable metal organic and inorganic precursors under optimized conditions at the substrate temperature of 600 °C. Thermal analysis (TGA/DTA) in the temperature range 30-600 °C with the heating rate of 10 °C/min revealed the decomposition behavior of the precursors and confirmed the suitable substrate temperature range for film processing. The heat of reaction, ΔH due to decomposition of metal organic precursor contributed additional heat energy to the substrate for better crystallization. The intensity of the (2 0 0) peak in X-ray diffraction (XRD) measurements and the smooth surface profiles revealed the dependency of precursor on film formation. The compositional purity and the metal-oxide bond formation were tested for all the films. UV-Vis-NIR optical absorption in the 200-1500 nm range revealed an optical transmittance above 80% and the absorption edge at about 238 nm corresponding to an optical band gap Eg = 5.25 eV. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) micrographs of MgO films confirmed better crystallinity with larger grain size (0.85 μm) and reduced surface roughness (26 nm), respectively.  相似文献   

9.
Gd2O3-doped CeO2 (Gd0.1Ce0.9O1.95, GDC) thin films were synthesized on (1 0 0) Si single crystal substrates by a reactive radio frequency magnetron sputtering technique. Structures and surface morphologies were characterized by X-ray diffraction (XRD), Atomic Force Microscopy (AFM) and one-dimensional power spectral density (1DPSD) analysis. The XRD patterns indicated that, in the temperature range of 200–700 °C, f.c.c. structured GDC thin films were formed with growth orientations varying with temperature—random growth at 200 °C, (2 2 0) textures at 300–600 °C and (1 1 1) texture at 700 °C. GDC film synthesized at 200 °C had the smoothest surface with roughness of Rrms=0.973 nm. Its 1DPSD plot was characterized with a constant part at the low frequencies and a part at the high frequencies that could be fitted by the f−2.4 power law decay. Such surface feature and scaling behavior were probably caused by the high deposition rate and random growth in the GDC film at this temperature. At higher temperatures (300–700 °C), however, an intermediate frequency slope (−γ2≈−2) appeared in the 1DPSD plots between the low frequency constant part and the high frequency part fitted by f−4 power law decay, which indicated a roughing mechanism dominated by crystallographic orientation growth that caused much rougher surfaces in GDC films (Rrms>4 nm).  相似文献   

10.
Thin films of LiCoO2 were prepared by pulsed laser deposition technique and the properties were studied in relation to the deposition parameters. The films deposited from a sintered composite target (LiCoO2+Li2O) in an oxygen partial pressure of 100 mTorr and at a substrate temperature of 300 °C exhibited preferred c-axis (0 0 3) orientation perpendicular to the substrate surface. The AFM data demonstrated that the films are composed of uniform distribution of fine grains with an average grain size of 80 nm. The grain size increased with an increase in substrate temperature. The (0 0 3) orientation decreased with increase in (1 0 4) orientation for the films deposited at higher substrate temperatures (>500 °C) indicating that the films’ growth is parallel to the substrate surface. The composition of the experimental films was analyzed using X-ray photoelectron spectroscopy (XPS). The binding energy peaks of Co(2p3/2) and Co(2p1/2) are, respectively, observed at 779.3 and 794.4 eV, which can be attributed to the Co3+ bonding state of LiCoO2. The electrochemical measurements were carried out on Li//LiCoO2 cells with a lithium metal foil as anode and LiCoO2 film as cathode of 1.5 cm2 active area using a Teflon home-made cell hardware. The Li//LiCoO2 cells were tested in the potential range 2.6-4.2 V. Specific capacity as high as 205 mC/cm2 μm was measured for the film grown at 700 °C. The growth of LiCoO2 films were studied in relation to the deposition parameters for their effective utilization as cathode materials in solid-state microbattery application.  相似文献   

11.
Yong Seob Park 《Journal of Non》2008,354(33):3980-3983
a-C:H films were prepared by closed-field unbalanced magnetron (CFUBM) sputtering on silicon substrates using argon (Ar) and acetylene (C2H2) gases, and the effects of post-annealing temperature on structural and mechanical properties were investigated. Films were annealed at temperatures ranging from 300 °C to 700 °C in increments of 200 °C using rapid thermal annealing equipment in vacuum ambient. Variations in microstructure were examined using Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Surface and mechanical properties were investigated by atomic force microscopy (AFM), nano-indentation, residual stress tester, and nano-scratch tester. We found that the mechanical properties of a-C:H films deteriorated with increased annealing temperature.  相似文献   

12.
Si homo-epitaxial growth by low-temperature reduced pressure chemical vapor deposition (RPCVD) using trisilane (Si3H8) has been investigated. The CVD growth of Si films from trisilane and silane on Si substrates are compared at temperatures between 500 and 950 °C. It is demonstrated that trisilane efficiency increases versus silane's one as the surface temperature decreases. Si epilayers from trisilane, with low surface roughness, are achieved at 600 and 550 °C with a growth rate equal to 12.4 and 4.3 nm min−1, respectively. It is also shown that Si1−xGex layers can be deposited using trisilane chemistry.  相似文献   

13.
The sol-gel route has been applied to obtain ZnO-TiO2 thin films. For comparison, pure TiO2 and ZnO films are also prepared from the corresponding solutions. The films are deposited by a spin-coated method on silicon and glass substrates. Their structural and vibrational properties have been studied as a function of the annealing temperatures (400-750 °C). Pure ZnO films crystallize in a wurtzite modification at a relatively low temperature of 400 °C, whereas the mixed oxide films show predominantly amorphous structure at this temperature. XRD analysis shows that by increasing the annealing temperatures, the sol-gel Zn/Ti oxide films reveal a certain degree of crystallization and their structures are found to be mixtures of wurtzite ZnO, Zn2TiO4, anatase TiO2 and amorphous fraction. The XRD analysis presumes that Zn2TiO4 becomes a favored phase at the highest annealing temperature of 750 °C. The obtained thin films are uniform with no visual defects. The optical properties of ZnO-TiO2 films have been compared with those of single component films (ZnO and TiO2). The mixed oxide films present a high transparency with a slight decrease by increasing the annealing temperature.  相似文献   

14.
La2Zr2O7 (LZO) films have been grown by metalorganic decomposition (MOD) to be used as buffer layers for coated conductors. A characteristic feature of LZO thin films deposited by MOD is the formation of nanovoids in an almost single crystal structure of LZO pyrochlore phase. Annealing parameters (heating ramp, temperature, pressure, etc.) were varied to establish their influence on the microstructure of the LZO layers. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used for sample characterization. The epitaxial pyrochlore phase was obtained for annealing temperatures higher than 850 °C whatever the other annealing conditions. However, the film microstructure, in particular, nanovoids shape and size, is strongly dependent on heating ramp and pressure during annealing. When using low heating ramp, percolation of voids creates diffusion channels for oxygen which are detrimental for the substrate protection during coated conductor fabrication. From this point of view high heating rates are more adapted to the growth of LZO layers.  相似文献   

15.
Tin oxide (SnO2) thin films were deposited on UV fused silica (UVFS) substrates using filtered vacuum arc deposition (FVAD). During deposition, the substrates were at room temperature (RT). As-deposited films were annealed at 400 and 600 °C in Ar for 30 min. The film structure, composition, and surface morphology were determined as function of the annealing temperature using X-ray diffraction (XRD), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). The XRD patterns of the SnO2 thin films deposited on substrates at RT indicated that the films were amorphous, however, after the annealing the film structure became polycrystalline. The grain size of the annealed films, obtained from the XRD analysis, increased with the annealing temperature, and it was in the range 8-34 nm. The AFM analysis of the surface revealed an increase in the film surface average grain size from 15 nm to 46 nm, and the surface roughness from 0.2 to 1.8 nm, as function of the annealing temperature. The average optical transmission of the films in the visible spectrum was >80%, and increased by the annealing ∼10%. The films’ optical constants in the 250-989 nm wavelength range were determined by variable angle spectroscopic ellipsometry (VASE). The refractive indexes of as-deposited and annealed films were in the range 1.83-2.23 and 1.85-2.3, respectively. The extinction coefficients, k(λ), of as-deposited and annealed films were in the range same range ∼0-0.5. The optical energy band gap (Eg), as determined by the dependence of the absorption coefficient on the photon energy at short wavelengths, increased with the annealing temperature from 3.90 to 4.35 eV. The lowest electrical resistivity of the as-deposited tin oxide films was 7.8 × 10−3 Ω cm, however, film annealing resulted in highly resistive films.  相似文献   

16.
Applying both template and Si cap technology, we achieved the epitaxial growth of CoSi2 directly on Si(1 0 0) substrate by rapid thermal annealing (RTA). The crystal quality of CoSi2 film is found to be significantly dependent on the Si cap thickness. In our work, a good-quality CoSi2 film with a minimum of χmin~11.6% and 3.3 Ω/square was obtained as a 15 nm Co with a subsequent 15 nm Si cap layer is deposited on an oxide-mediated CoSi2 template and followed by an anneal at 1050 °C under N2 protection; whereas too thin or thick Si cap layer will deteriorate the crystalline quality of CoSi2. These experimental results are discussed in combination with the simulation of Rutherford backscattering spectroscopy and X-ray reflectivity.  相似文献   

17.
To improve the properties of polycrystalline Ge thin films, which are a candidate material for the bottom cells of low cost monolithic tandem solar cells, ∼300 nm in situ hydrogenated Ge (Ge:H) thin films were deposited on silicon nitride coated glass by radio-frequency magnetron sputtering. The films were sputtered in a mixture of 15 sccm argon and 10 sccm hydrogen at a variety of low substrate temperatures (Ts)≤450 °C. Structural and optical properties of the Ge:H thin films were measured and compared to those of non-hydrogenated Ge thin films deduced in our previous work. Raman and X-ray diffraction spectra revealed a structural evolution from amorphous to crystalline phase with increase in Ts. It is found that the introduction of hydrogen gas benefits the structural properties of the polycrystalline Ge film, sputtered at 450 °C, although the onset crystallization temperature is ∼90 °C higher than in those sputtered without hydrogen. Compared with non-hydrogenated Ge thin films, hydrogen incorporated in the films leads to broadened band gaps of the films sputtered at different Ts.  相似文献   

18.
Li Wang 《Journal of Non》2011,357(3):1063-1069
Amorphous SiC has superior mechanical, chemical, electrical, and optical properties which are process dependent. In this study, the impact of deposition temperature and substrate choice on the chemical composition and bonding of deposited amorphous SiC is investigated, both 6 in. single-crystalline Si and oxide covered Si wafers were used as substrates. The deposition was performed in a standard low-pressure chemical vapour deposition reactor, methylsilane was used as the single precursor, and deposition temperature was set at 600 and 650 °C. XPS analyses were employed to investigate the chemical composition, Si/C ratio, and chemical bonding of deposited amorphous SiC. The results demonstrate that these properties varied with deposition temperature, and the impact of substrate on them became minor when deposition temperature was raised up from 600 °C to 650 °C. Nearly stoichiometric amorphous SiC with higher impurity concentration was deposited on crystalline Si substrate at 600 °C. Slightly carbon rich amorphous SiC films with much lower impurity concentration were prepared at 650 °C on both kinds of substrates. Tetrahedral Si-C bonds were found to be the dominant bonds in all deposited amorphous SiC. No contribution from Si-H/Si-Si but from sp2 and sp3 C-C/C-H bonds was identified.  相似文献   

19.
Metal organic vapour phase epitaxy (MOVPE) has been used to epitaxially grow MgO films on c-plane sapphire substrates. Bismethylcyclopentadienyl magnesium (MCP2Mg) and nitrous oxide (N2O) were used as the magnesium and the oxygen source, respectively, with nitrogen (N2) as the carrier gas. The dependence of the growth rate on the partial pressure of magnesium and on the growth temperature was investigated. The growth rate increases with the magnesium partial pressure. The morphological and structural properties of MgO films were investigated using atomic force microscopy and X-ray diffraction. The structural properties are strongly dependent on the growth temperature in the range 400–800 °C. (1 1 1)-oriented MgO layers are observed at growth temperatures above 600 °C whereas no diffraction peak is found at lower growth temperatures. The atomic force microscopy (AFM) images reveal a smooth surface morphology.  相似文献   

20.
We have obtained single-crystal aluminum nitride (AlN) layers on diamond (1 1 1) substrates by metalorganic vapor-phase epitaxy (MOVPE). When the thermal cleaning temperature of the substrate and growth temperature of the AlN layer were below 1100 °C, the AlN layer had multi-domain structures mainly consisting of rotated domains. An interface layer, consisting of amorphous carbon and poly-crystal AlN, was formed between the AlN layer and the diamond substrate. On the other hand, when the thermal cleaning temperature and growth temperature were above 1200 °C, a single-crystal AlN layer was grown and no interface layer was formed. Therefore, we attribute the multi-domain structures to the interface layer. Even at the growth temperature of 1100 °C, by performing the thermal cleaning at 1200 °C, the single-crystal AlN layer was obtained, indicating that the thermal cleaning temperature of the substrate is a critical factor for the formation of the interface layer. The epitaxial relationship between the single-crystal AlN layer and the diamond (1 1 1) substrate was determined to be [0 0 0 1]AlN∥[1 1 1]diamond and [1 0 1¯ 0]AlN∥[1 1¯ 0]diamond. The AlN surface had Al polarity and no inversion domains were observed in the AlN layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号