首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P. Bharathan 《Journal of Non》2011,357(18):3366-3372
We have experimentally measured the current-voltage and capacitance-voltage characteristics of Au/amorphous AsxSe1 − x (x ≤ 0.05)/Zr trilayer structures at temperatures from 4 to 295 K. The observed capacitance of structures with an amorphous AsxSe1 − x (a-AsxSe1 − x) thickness of ~ 0.4 to ~ 2.8 μm does not significantly change over the entire range of applied bias (− 5 V to 5 V), indicating that the a-AsxSe1 − x films are fully depleted and thus the structures are Mott barriers. The current-voltage (I-V) characteristics of the a-As0.03Se0.97 device at low (< 3000 V/cm) to moderate fields (3000 V/cm-10000 V/cm) follow the predictions of trap limited space charge conduction theory, as they exhibit Ohmic behavior at low fields and trap limited space charge current at moderate fields. According to the trap limited space charge current model of Lampert, the a-As0.03Se0.97 film has an effective hole mobility, Θμ (with Θ < 1), of ~ 5 × 10− 7 cm2/V-sec at 295 K. This value is similar to, but consistently lower than previously reported mobilities inferred from time of flight measurements. The current at high fields (> 104 V/cm) increases rapidly with applied field as a result of carrier emission from localized states and is consistent with transport by the Poole-Frenkel mechanism. A permanent transition to a high conductance state (~ 10− 3 S) is observed after exposure to very high electric fields (~ 4 × 105V/cm).  相似文献   

2.
The dislocation structure at the initial stage of relaxation of GexSi1−x films (x∼0.4–0.8) grown on Si (0 0 1) substrates tilted at 6° to the nearest (1 1 1) plane is studied. The use of Si substrates tilted away from the exact (0 0 1) orientation for epitaxial growth of GexSi1−x films (x≥0.4) allowed finding the basic mechanism of formation of edge dislocations that eliminate the mismatch stresses. Though the edge dislocations are defined as sessile dislocations, they are formed in accordance with the slipping mechanism proposed previously by Kvam et al. (1990). It is highly probable that a 60° misfit dislocation (MD) propagating by the slipping mechanism provokes the nucleation of a complementary 60° MD slipping in a mirror-like tilted plane (1 1 1). The reaction between these dislocations leads to the formation of an edge MD that ensures more effective reconciliation of the discrepancy. Comparative estimation of the slip velocities of the primary and induced 60° MDs and also of the resultant 90° MD is fulfilled. The slip velocity of the induced 60° MD is appreciably greater than the velocity of the primary 60° MD. Therefore, the induced MD “catches up” with the second front of the primary MD, thus forming a 90° MD propagating to both sides due to slipping of the 60° MDs forming it. The propagation velocity of the 90° MD is also greater than the slip velocity of a single 60° MD. For these reasons, 90° MDs under certain conditions that favor their formation and propagation can become the main defects responsible for plastic relaxation of GeSi films close to Ge in terms of their composition.  相似文献   

3.
The elastic properties of GexAsySe100−xy (0x30; 10y40) glasses have been studied. The results were analyzed in terms of the dependence on the theoretical mean coordination number (mean number of covalent bonds per atom) m (m=2+(2x+y)×0.01). Three ranges of m (2.1m2.51, 2.51<m2.78, 2.78<m3) were revealed, where different dependencies of elastic moduli (Young’s modulus, shear modulus) and Poisson’s ratio of glasses on m were observed.  相似文献   

4.
The knowledge of the phase relations and solubilities in the Y–Ba–Cu–O and Nd–Ba–Cu–O systems are of fundamental importance for crystal growth and liquid-phase epitaxy of YBa2Cu3O7−δ (YBCO) and Nd1+xBa2−xCu3Oδ (NdBCO). The determination of the solubility curve of YBCO and NdBCO in a BaO/CuO flux containing 31 mol% BaO was done by observation of the formation and dissolution of crystals on the surface of the high-temperature solution. The heat of the solution of YBCO at 1000°C was found to be 34.7 kcal/mol, and for NdBCO at 1060°C, it was found to be 28.1 kcal/mol. The determination of the solubility curves requires special care, and the problems of the time-dependent shift of the solution composition due to the corrosion of the crucible is discussed. The scatter of the solubility data published by different authors could be due to the use of solutions with different Ba : Cu ratios, different determination methods, i.e. different crystallization mechanisms, different crucibles and starting chemicals.  相似文献   

5.
The Mg doping behavior of MOVPE indium gallium nitride (InGaN), such as secondary ion mass spectrometry (SIMS) Mg profile, crystalline quality and n–p conversion of the films are described and discussed in this paper. The SIMS analysis reveals that the memory effect of Cp2Mg as a doping source deteriorates the controllability of Mg doping level and profile, especially for thin (−0.4 μm) InGaN. The high residual donors (1019–1020 cm−3) in InGaN with In content from 0.05 to 0.37 can be compensated by Mg doping and p-type conduction is obtained for those with In content up to 0.2. It is found that a higher Cp2Mg flow rate is needed to get p-type conduction in InGaN with a higher In content x; for example, Cp2Mg/(TEG+TMI)≈0.5% for x=0 (GaN), ≈2% for x=0.05 and ≈4% for x=0.2. Such a high Cp2Mg flow rate is needed due to the high residual donor concentration (1019–1020 cm−3) of InGaN films and the low activation efficiency of Mg. The crystalline quality of InGaN is deteriorated with increasing In content as well as Mg doping level. To achieve a p-type InGaN with a lower Mg doping, it is essential to improve the crystalline quality of non-doped InGaN. For this purpose, the use of a thicker GaN interlayer is effective.  相似文献   

6.
Glasses with the mol% composition 4.9Na2O · 33.3CaO · 17.1Fe2O3 · 44.7B2O3 were melted, rapidly quenched using a twin roller technique, and subsequently tempered in the range from 550 to 620 °C. This led to the crystallization of magnetite with mean crystallite sizes in the 10-20 nm range. Using higher temperatures resulted in a larger quantity of formed crystallites and slightly larger mean crystallite sizes. Larger tempering times did not lead to substantial crystal growth. The time law of Ostwald ripening was not followed. This is explained by an increase in viscosity of the residual glassy phase during nucleation and crystal growth. Here, the smaller iron concentration near the crystals leads to higher viscosities and to the formation of a diffusional barrier around the crystals, which reduces further crystal growth. The crystallization stops, if Tg of the residual glassy phase is equal to the tempering temperature. Magnetite nano crystals with sizes in the 10-20 nm range offer a wide range of applications, such as the preparation of ferrofluids or of materials for medical diagnostics and therapy.  相似文献   

7.
Cd1 − xFexTe single crystals were prepared by vapour phase growth method in the composition range of 0 ≤ x ≤ 0.03. Chemical analysis, surface morphology, structural investigations and electrical properties were carried out by EDAX, SEM, XRD, TEM and transport technique, respectively. Microscopic variations between the target and actual compositions were noticed. Morphology studies revealed that dislocation aided growth is active in the present crystals. TEM and XRD studies confirmed that the samples of all compositions crystallized in zinc blende structure, and the lattice parameters varied almost linearly decreases with Fe content. At room temperature, the resistivity of the Cd1 − xFexTe crystals of all compositions (x = 0.01, 0.015, 0.02, 0.025 and 0.03) lies in the range of 3.5-6.5 M Ω, the activation energies lie in the range of 63-133 meV, and the samples were show the ‘p’ type conductivity.  相似文献   

8.
The models for calculation of phase diagrams of semiconductor thin films with different substrates were proposed by considering the contributions of strain energy, the self-energy of misfit dislocations and surface energy to Gibbs free energy. The phase diagrams of the AlxIn1−xAs and AsxSb1−xAl thin films grown on the InP (1 0 0) substrate, and the AlxIn1−xSb thin films grown on the InSb (1 0 0) substrate at various thicknesses were calculated. The calculated results indicate that when the thickness of film is less than 1 μm, the strain-induced zinc-blende phase appears, the region of this phase extends with decreasing of the layer thickness, and there is small effect of surface energies of liquid and solid phases on the phase diagrams.  相似文献   

9.
Fine-sized ZnO–B2O3–CaO–Na2O–P2O5 glass powders with spherical shape were directly prepared by high temperature spray pyrolysis. The ZnO–B2O3–CaO–Na2O–P2O5 powders prepared by spray pyrolysis at temperatures above 1200 °C had broad peaks at around 30° in the XRD patterns. The glass transition temperatures (Tg) of the glass powders obtained by spray pyrolysis at preparation temperatures between 900 °C and 1400 °C were near 480 °C regardless of the preparation temperatures. The dielectric layers formed from the glass powders prepared by spray pyrolysis at preparation temperatures above 1300 °C had clean surface and dense inner structure at the firing temperature of 580 °C. The transmittance of the dielectric layer formed from the glass powders obtained by spray pyrolysis at preparation temperature of 1400 °C was 90% at the firing temperature of 580 °C, in which the thickness of the dielectric layer was 13 μm. The UV cutoff edges gradually shift towards longer wavelength with increasing the preparation temperature of glass powders and the firing temperature of dielectric layers.  相似文献   

10.
High-quality superlattice structures of GaN/AlGaN were grown on (0 0 0 1) sapphire substrates by molecular beam epitaxy. The threading dislocation density was reduced by growing low-temperature AlN layers in between the high-temperature GaN. In addition, in situ monitoring of the growth rate was achieved using pyrometric interferometry. Cross-sectional transmission electron microscopy of the superlattice structures revealed abrupt interfaces between GaN/AlGaN and excellent layer uniformity. We observed intersubband absorption at wavelengths as short as 1.52 μm in the GaN/AlGaN material system. A range of intersubband absorption peaks was observed between 1.52 and 4.2 μm by varying the well thickness and barrier Al content. In addition, the distribution of the built-in electric field between the well and barrier layers was also found to affect the intersubband transition wavelength.  相似文献   

11.
Glasses of the xNd2O3(1−x)(3Bi2O3 · PbO) system with 0?x?0.30 were obtained and studied by IR spectroscopy, X-ray photoelectron spectroscopy (XPS), density and magnetic susceptibility measurements. IR and density measurements show that the addition of neodymium ions produces structural changes and the neodymium ions play a network modifier role in the host glass matrix. XPS investigation permitted following the evolution of the structural disorder, of the degree of polymerization of bismuthate chains and of the fraction of bridging oxygens with respect to the neodymium ion concentration of the studied glasses. Magnetic susceptibility data show that the Nd3+ ions are present as isolated species for x?0.05 and as both isolated and exchange coupled species for higher x values.  相似文献   

12.
CuZr as well as CoZr are well known metallic glass-formers in a wide compositional range. Since the binary Cu-Co system exhibits a metastable liquid-liquid miscibility gap, i.e. Cu and Co tend to separate from each other, the ternary Cu-Co-Zr system is a promising candidate to form phase separated glass-glass composites. In this work (Cu60Co40)1 − xZrx metallic glasses with relatively low Zr contents of x = 37 and x = 32 were prepared by melt spinning and investigated by in-situ small-angle and wide-angle X-ray scattering (SAXS/WAXS) and differential scanning calorimetry (DSC). Certain heat treated samples were additionally investigated by high-resolution transmission electron microscopy (HRTEM). Even for x = 32 there are no indications for any kind of phase separation in the as-quenched state within experimental resolution, i.e. the critical temperature Tc for a liquid-liquid phase separation has already decreased from 1556 K for binary Cu60Co40 to a temperature below the glass transition temperature Tg = 762(5)K found for (Cu60Co40)68Zr32. Combined in-situ SAXS/WAXS and HRTEM investigations reveal that thermal annealing also does not induce an amorphous-amorphous phase separation. Instead the formation of nano crystallites of a so far unknown Cu-rich/Zr-poor phase with relatively low activation energy for crystallization Ea = 116(7) kJ/mol at temperatures far below the crystallization temperature deduced from DSC measurements is observed.  相似文献   

13.
Technical applications of artificial crystals strongly depend on tailoring the defect structure. In compound semiconductors, native defect concentration is closely related to non-stoichiometry. Vapor pressure scanning (VPS) is a direct high precision method of in situ investigation of the composition of non-stoichiometric crystals at high temperatures. It is based on experimental measurements of the vapor pressure, from which three-dimensional PTX (pressure–temperature–composition) range of existence of the crystalline phase is outlined. In this communication VPS data on non-stoichiometry in the Cd–Zn–Te system are presented. Geometrical analysis of the phase equilibrium is performed, and composition of the crystal, melt and vapor is determined in the technologically most important melting region. It will be shown how to apply experimental PTX phase equilibrium data for preparation of the material with pre-determined composition, either stoichiometric or with a certain deviation from stoichiometry. Different technologies are analyzed: vapor-phase growth, vertical, horizontal and high-pressure Bridgman. VPS has proved to be a powerful analytical tool. For CdZnTe the accuracy of the VPS determination of non-stoichiometry was shown to be as high as 10−4 at.% for temperatures up to the melting point.  相似文献   

14.
New glasses in the PbBr2–PbCl2–PbF2–PbO–P2O5 system have been prepared and characterized. The glass-forming regions have been explored and the stability of the glasses against crystallization studied. Results show that the PbBr2–PbCl2–P2O5 ternary system has a broad glass-forming region which extends to 30 mol% P2O5. Most of the glasses in this system show strong stability against crystallization and some have glass transition temperatures as low as 146°C. When 5% PbO or 5% PbF2 is introduced into the PbBr2–PbCl2–P2O5 system, the glass-forming region becomes smaller and the glass transition temperatures increase. However, the introduction of 2.5% PbF2 and 2.5% PbO into the ternary system increases the glass transition temperature and broadens the glass-forming region. The introduction of PbF2 alone improves the glass-forming ability of the system while the introduction of PbO alone lowers the glass-forming ability.  相似文献   

15.
Different concepts for achieving strain-compensated quantum well structures emitting at 1300 nm have been investigated. Structures employing up to eight compressively strained wells with the same x in well and barrier exhibits excellent structural and optical properties, including very high photoluminescence efficiency. Increased number of quantum wells beyond 8 resulted in deteriorated materials quality, most likely due to accumulated strain-induced roughness of the growing surface. Good laser characteristics, including T0 values of 64 K, were demonstrated for strain-compensated structures with tensile wells.  相似文献   

16.
We have investigated the ionic transport in the 0.2[XNa2O · (1−X)Rb2O] · 0.8B2O3 mixed-alkali system with X=0.0, 0.2, 0.4, 0.6, 0.8, and 1.0 in the glassy and the undercooled-liquid state by means of impedance spectroscopy and tracer diffusion experiments. The calorimetric glass-transition temperature Tg obtained by differential scanning calorimetry shows a minimum with composition. The composition dependence of the electrical conductivity below Tg exhibits a minimum, as well. These deviations from an ‘ideal’ linear mixing rule are usually denoted as mixed-alkali effect. The dc conductivities times temperature σdc×T follow the Arrhenius law in the range below and above Tg, respectively. The glass transition appears as a kink in the Arrhenius presentation of σdc×T. Below the glass-transition temperature the onset frequency νon of the conductivity dispersion has an Arrhenius-like temperature dependence. According to ‘Summerfield scaling’ the activation enthalpies of σdc×T and νon are expected to be the same. This is indeed observed but only for the single-alkali compositions. The activation enthalpies of σdc×T as a function of composition show a classical mixed-alkali maximum, however the activation enthalpies of the onset frequencies as a function of composition exhibit a nearly constant behavior in contrast to the expectation from Summerfield scaling. The tracer diffusion measurements reveal a major difference in diffusion of 86Rb and 22Na in mixed-alkali glasses. A diffusivity crossover of tracer diffusion coefficients of 22Na and 86Rb occurs near X=0.2. By comparison of tracer and conductivity diffusivities the Haven ratio is deduced which shows a maximum near the conductivity minimum composition.  相似文献   

17.
Aiming at tailoring optical properties, the precipitation of LaF3 nano-crystals in LaF3–Na2O–Al2O3–SiO2 glass-ceramics is studied thoroughly on the nano-scale using advanced transmission electron microscopic techniques. Nano-sized phase-separation droplets enriched in lanthanum and silicon are formed already in the base glass. Within these less than 20 nm large droplets, LaF3 crystallizes upon heat treatment. The nano-crystallization mechanism revealed is self-limited since growth is restricted by the size of the droplets. An average crystallite size of around 12 nm is achieved with a narrow size distribution since the phase-separation droplets also contain silicon not incorporated into the growing crystal. Instead, excess silicon relocated to the periphery of the pre-existing phase-separation droplets forms a diffusion barrier around the LaF3 nano-crystals preventing further crystal growth and/or ripening.  相似文献   

18.
Specimens of the glassy system: (70 − x)TeO2 + 15B2O3 + 15P2O5 + xLi2O, where x = 5, 10, 15, 20, 25 and 30 mol% were prepared by the melt-quenching. An ultrasonic pulse-echo technique was employed, at 5 MHz, for measuring: the ultrasonic attenuation, longitudinal and shear wave velocities, elastic moduli, Poisson ratio, Debye temperature and hardness of the present glasses. It is found that the gradual replacement of TeO2 by Li2O in the glass matrix up to 30 mol% leads to decrease the average crosslink density and rigidity of prepared samples which affects the properties, i.e., the hardness, ultrasonic wave velocities and elastic moduli are decreased, while the Poisson ratio and the ultrasonic attenuation are increased. Also, optical absorption spectra were recorded in the range, 200-800 nm for these glasses. The obtained results showed that a gradual shift in the fundamental absorption edge toward longer wavelengths occurred. Values of both of the optical energy gap, Eopt, and width tails, ΔE, are determined. It is observed that Eopt is decreased and ΔE increased with the increase of Li2O in the glass matrix up to 30 mol%. The compositional dependences of the above properties are discussed and correlated to the structure of tested glasses.  相似文献   

19.
High-density lead ferroniobate PbFe1/2Nb1/2O3 (PFN) is prepared by conventional ceramic technology. Its structural properties are studied in a wide temperature range (293 ≤ T ≤ 973 K). The following chain of phase transitions is established in the vicinity of the transition to the polar phase: Rh (rhombohedral phase) (T < 363 K) → Psc (pseudo-cubic phase) (363 < T < 387 K) → C (cubic phase) (T > 387 K). The paraelectric range contains five ranges of constant unit-cell volume (invar effect): I (387 ≤ T ≤ 413 K), II (433 ≤ T ≤ 463 K), III (553 ≤ T ≤ 613 K), IV (743 ≤ T ≤ 773 K), and V (798 ≤ T ≤ 823 K). It is shown that the anomalous behavior of the PFN dielectric characteristics above the Curie temperature, which was revealed previously, is associated with the specific features of its real (defect) structure, which is caused by the crystal-chemical specificity of the main structure-forming agents: α-Fe2O3 and αht-Nb2O5.  相似文献   

20.
We present MOVPE-grown, high-quality AlxGa1−x N layers with Al content up to x=0.65 on Si (1 1 1) substrates. Crack-free layers with smooth surface and low defect density are obtained with optimized AlN-based seeding and buffer layers. High-temperature AlN seeding layers and (low temperature (LT)/high temperature (HT)) AlN-based superlattices (SLs) as buffer layers are efficient in reducing the dislocation density and in-plane residual strain. The crystalline quality of AlxGa1−xN was characterized by high-resolution X-ray diffraction (XRD). With optimized AlN-based seeding and SL buffer layers, best ω-FWHMs of the (0 0 0 2) reflection of 540 and 1400 arcsec for the (1 0 1¯ 0) reflection were achieved for a ∼1-μm-thick Al0.1Ga0.9N layer and 1010 and 1560 arcsec for the (0 0 0 2) and (1 0 1¯ 0) reflection of a ∼500-nm-thick Al0.65Ga0.35N layer. AFM and FE-SEM measurements were used to study the surface morphology and TEM cross-section measurements to determine the dislocation behaviour. With a high crystalline quality and good optical properties, AlxGa1−x N layers can be applied to grow electronic and optoelectronic device structures on silicon substrates in further investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号