首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two-step selective epitaxy (SAG/ELO) of (1 1 2¯ 2)GaN on (1 1 3)Si substrate is studied to reduce the defect density in the epitaxial lateral overgrowth. The first SAG/ELO is to prepare a (1 1 2¯ 2)GaN template on a (1 1 3)Si and the second SAG/ELO is to get a uniform (1 1 2¯ 2)GaN. It is found that the reduction of the defect density is improved by optimizing the mask configuration in the second SAG/ELO. The minimum dark spot density obtained is 3×107/cm2, which is two orders of magnitude lower than that found in a (0 0 0 1)GaN grown on (1 1 1)Si.  相似文献   

2.
Semi-polar (1 1 2¯ 2) GaN layers were selectively grown by metal organic chemical vapor phase epitaxy on patterned Si (3 1 1) substrates without SiO2 amorphous mask. The (1 1 2¯ 2) GaN layers could be selectively grown only on Si (1 1 1) facets when the stripe mask width was narrower than 1 μm even without SiO2. Inhomogeneous spatial distribution of donor bound exciton (DBE) peak in low-temperature cathodoluminescence (CL) spectra was explained by the difference of growth mode before and after the coalescence of stripes. It was found that the emission intensity related crystal defects is drastically decreased in case of selective growth without SiO2 masks as compared to that obtained with SiO2 masks.  相似文献   

3.
Nitrified HfO2/Si substrate was used to grow GaN-based film with molecular beam epitaxy. Four-period InGaN/GaN layered structure and p/n junction were deposited on the nitrified HfO2/Si. X-ray photoelectron spectroscopy (XPS) result shows that N was effectively incorporated into the HfO2. The crystallographic relationship of the GaN/HfO2/Si is GaN(0 0 0 2)∥HfO2(1 1 1)∥Si(1 1 1). Temperature-dependent photoluminescence (PL), PL peak wavelength, PL peak intensity, and PL full-width at half-maximum of the p/n junction were investigated. Light-emitting diode was fabricated from the p/n junction. Red light was emitted at low voltage and yellow light was emitted when increasing the voltage.  相似文献   

4.
Epitaxial GaAs layers have been deposited on polished Ge film grown on exactly (0 0 1) oriented Si substrate by metal-organic chemical vapor deposition (MOCVD) via aspect ratio trapping (ART) method. Double-crystal X-ray diffraction shows that the full-width at half-maximum (FWHM) of the (4 0 0) reflection obtained from 1 μm GaAs is 140 arcsec. Scanning electron microscopy (SEM) of the GaAs layer surface shows that the amount of antiphase domain defects (APD) raised from GaAs/Ge interface using Ge ART on Si is dramatically reduced compared to GaAs layers grown on exact (0 0 1) Ge substrate. Defect reduction and Ge diffusion at vicinal GaAs/Ge interface were investigated via cross-section transmission electron microscopy (X-TEM) and secondary ion mass spectrometry (SIMS). Film morphology and optical properties were evaluated via SEM and room temperature photoluminescence (PL).  相似文献   

5.
The hydride-vapour-phase-epitaxial (HVPE) growth of semi-polar (1 1 2¯ 2)GaN is attempted on a GaN template layer grown on a patterned (1 1 3) Si substrate. It is found that the chemical reaction between the GaN grown layer and the Si substrate during the growth is suppressed substantially by lowering the growth temperatures no higher than 900 °C. And the surface morphology is improved by decreasing the V/III ratio. It is shown that a 230-μm-thick (1 1 2¯ 2)GaN with smooth surface is obtained at a growth temperature of 870 °C with V/III of 14.  相似文献   

6.
GaN crystals were overgrown on GaN nanocolumn platforms with a Be-doped coalesced layer by rf-plasma-assisted molecular-beam epitaxy (rf-MBE). The overgrown GaN included large micrometer-scale hexagonal columnar crystals. These microcrystals were named ‘microcolumns’ and showed high optical properties comparable to those of GaN bulk crystals grown by hydride vapor phase epitaxy (HVPE).  相似文献   

7.
An in-situ optical monitoring system made in our laboratory is set up on the horizontal hydride vapor phase epitaxy (HVPE) equipment. From the growth rate information provided by this system, some basic growth parameters are optimized and high-quality GaN layers are grown. The growth stress of the HVPE GaN layer grown on different templates is also examined through the in-situ optical measuring.  相似文献   

8.
Sintering of a ZnS–SnO2 mixture under argon flow leads to the growth of columnar nanoplate arrays as well as arrays of nanowires, nanorods and nanoplates with six-fold symmetry. The six-fold nanoplate structures correspond to a more advanced stage of growth than the nanowire structures. Cathodoluminescence (CL) in the scanning electron microscope (SEM) shows that the structures contain Sn, but the amount of this element is normally under the detection limit of X-ray energy-dispersive spectroscopy (EDS). The formation of branches in the hierarchical structures depends on the presence of Sn and on defects in the mixture powder.  相似文献   

9.
ZnO nanorods were prepared on the silicon (100) substrates using the chemical solution deposition method (CBD) without catalyst under a low temperature (90°C). The cool water was used to dissolve the mixture of zinc nitrate hexahydrate (Zn (NO3)2·6H2O) and methenamine (C6H12N4) in order to decrease the size of ZnO nanorods. From the X‐ray diffraction (XRD) results, it can be seen that the growth orientation of the as‐prepared ZnO nanorods was (002). Scanning electron microscopy (SEM) results illustrated that the nanorods had a hexagonal wurzite structure and average diameter of about 120nm. The average diameter of nanorods prepared by the cool water process was much smaller than that by the room‐temperature (RT) water process we always used. Photoluminescence (PL) measurements were also carried out. The result showed that a blue shift in UV emission band appeared in the PL spectrum of the sample grown with cool water process, which was mainly due to the reduction of tensile strain when the diameter of the ZnO nanorods decreased. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Using an AlInN intermediate layer, GaN was grown on (1 1 1)Si substrate by selective metalorganic vapor phase epitaxy. The variation of the surface morphology was investigated as a function of the In composition and thickness of the AlInN layer. It was found that the In composition in the AlInN layer was a function of the growth temperature and thickness. Because of the small band offset at the AlInN/Si hetero-interface, we have achieved a low series resistance of the order of 9 Ω (0.0036 Ω cm2) across the GaN/AlInN/AlN/Si layer structure.  相似文献   

11.
Adopting anisotropy etching method, a (1 1 1) facet of Si is obtained on a Si substrate and selective area growth (SAG) of GaN is performed with metal-organic vapor phase epitaxy on the facet. The epitaxial lateral overgrowth of (1 1¯ 0 1), (1 1 2¯ 2) GaN is investigated on (0 0 1) and (1 1 3) Si substrate, respectively, and the incorporation properties of Si, C, and Mg elements are discussed in relation to the atomic configuration on the surface. Analyzing the optical and electrical properties of C-doped (1 1¯ 0 1) GaN layer, it is shown that carbon creates a shallow acceptor level. On the thus prepared (1 1¯ 0 1) GaN layer, a light emitting diode (LED) with a C-doped p-type layer is fabricated.  相似文献   

12.
Approximately 2-μm-thick Si-doped a-plane GaN films with different doping concentrations were grown on approximately 8-μm-thick undoped a-plane GaN/r-sapphire by metal organic vapor phase epitaxy (MOVPE). The structural and electrical properties of the Si-doped a-plane GaN films were investigated by high-resolution X-ray diffraction (HRXRD), atomic force microscopy (AFM) and temperature-dependent Hall measurement. The results showed that a small amount of Si doping can improve the surface morphology and decrease the density of pits. Upon increasing the CH3SiH3 flow rate, the crystalline quality of the (0 0 0 2) plane was slightly improved. The highest room-temperature mobility of 83.4 cm2/Vs was obtained at a carrier density of 6.2×1018 with a CH3SiH3 flow rate of 10 sccm.  相似文献   

13.
B. Guo  X.L. Guo  M.Z. Ma  W.W. Zhang 《Journal of Non》2008,354(28):3348-3353
Nanocrystalline/amorphous matrix composites obtained by isothermal compression at high temperatures and low strain rates were characterized using transmission electron microscopy. To study the influence of high temperature deformation on the fracture behavior and room temperature plasticity, compression tests with a constant strain rate of 1 × 10−4 s−1 were applied to the deformed samples. Fracture features of as-cast alloy and deformed samples were analyzed using scanning electron microscopy. Compared with the as-cast alloy, the room temperature plasticity of deformed sample is not destroyed both in the range of 370-395 °C at 1 × 10−3 s−1 and at 395 °C in 1 × 10−2 to 1 × 10−3 s−1, and deteriorated at higher temperatures and lower strain rates. Corresponding to the TEM images, the homogenously dispersed nanocrystals with small size contribute to the compressive plasticity, and the aggregated large nanoparticles destroy the plasticity of the sample after high temperature deformation.  相似文献   

14.
High purity nanorods of vanadium doped zinc oxide with five different concentrations are prepared by a well known ceramic double sintering method. XRD patterns of the samples reveal a wurtzite phase formation. SEM micrographs confirm the nanorods in the samples. Purity of the samples is characterised using EDX analysis. UV–Vis–NIR study of the samples shows a red shift in bandgap for the substitution of V in ZnO matrix. FTIR study confirms the presence of defect states and enhancement of covalent bonding over ionic bond due to the incorporation of the V ions into ZnO lattice. An ultimate find we report in the present work is that the addition of V in ZnO could smoothly tailor the optical bandgap energy due to formation of the exciton states. An enhancement of covalent bonding in V doped ZnO will provide a platform for the third order susceptibility or photonic applications.  相似文献   

15.
16.
The threading dislocation density of hydride vapor phase epitaxy (HVPE)-grown thick GaN layers was measured by high-resolution X-ray diffraction (HR-XRD). Three models were compared, namely mosaic model, Kaganer model and modified Kaganer model. X-ray rocking curves (XRC) of (0 0 0 2), (1 0 1¯ 5), (1 0 1¯ 4), (1 0 1¯ 3), (1 0 1¯ 2), (1 0 1¯ 1) and (1 0 1¯ 0) planes were recorded for quantitative analysis. The screw-, edge-, and mixed-type threading dislocation densities were simulated from the XRD line profile by using the three models. The dislocation density was also measured by atomic force microscopy (AFM), wet chemical etching and cathodoluminescence (CL). The results showed that the Kaganer model was more physically precise and well explained the rocking curve broadening for HVPE-grown high-quality GaN compared with the mosaic model. Assuming a randomly distributed threading dislocation configuration, we modified the Kaganer model. Based on the modified Kaganer model, the edge and screw threading dislocation densities in HVPE-grown GaN thick films ranging from 20 μm up to 700 μm were analyzed. It was shown that screw-type dislocation density decreased more rapidly than edge-type dislocation with increase in film thickness.  相似文献   

17.
X.L. Duan  C.F. Song  F.P. Yu  D.R. Yuan 《Journal of Non》2008,354(29):3516-3519
Co2+-doped MgAl2O4 nanocrystalline powders were prepared by co-precipitation method. The gels and/or calcined samples were characterized by means of thermogravimetry and differential scanning calorimetry (TG/DSC), X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier transform infrared (FTIR) spectrum and near-infrared absorption spectrum. MgAl2O4 nanocrystals were produced by calcining the gel above 800 °C, with the crystallite size of 10-30 nm in the temperature range of 800-1100 °C. The influence of pH value of precipitant solution on the dispersing of powders was studied and the result showed that Co:MgAl2O4 nanocrystalline powders exhibited good dispersion when pH = 11. The absorption spectrum of Co2+-doped MgAl2O4 exhibited a broad absorption band in the wavelength range of 1200-1600 nm, which indicated that Co2+ ions substituted for the tetrahedrally coordinated Mg2+ ions in the MgAl2O4 lattice.  相似文献   

18.
a-Plane GaN and AlGaN were grown on r-plane sapphire by low-pressure metal-organic vapor epitaxy (LP-MOVPE), and the effects of reactor pressure (from 40 to 500 Torr) and growth temperature (from 1020 to 1100 °C) on the crystalline quality and surface morphology of a-plane GaN were studied. The a-plane GaN grown under 40 Torr had a smooth-surface morphology but a poor crystalline quality; however, the a-plane GaN grown under 500 Torr had higher crystalline quality and optical properties, whose full-width at half-maximum of the X-ray rocking curve (XRC-FWHM) and intensity of yellow luminescence (YL) were smaller. Furthermore, the optical properties of a-plane GaN were investigated by photoluminescence (PL) in detail. We also studied the emission properties of a-plane Al0.35Ga0.65N grown at room temperature.  相似文献   

19.
The selective regrowth of GaN during sidewall-seeded epitaxial lateral overgrowth was performed. In addition to adjusting the V/III ratio, control of offset angle of the sidewall was found to be effective for realizing one-sidewall-seeded a-plane (1 1 2¯ 0) GaN on r-plane (1 1¯ 0 2) sapphire. The number of coalescence regions on the grooves was reduced, and threading-dislocation and stacking-fault densities as low as 106–107 cm−2 and 103–104 cm−1, respectively, were successfully realized.  相似文献   

20.
T. Mika  G. Haneczok  E. ?agiewka 《Journal of Non》2008,354(27):3099-3106
Crystallization of amorphous Al-based alloys (Al-Y-Gd-Ni-Fe) was investigated by applying differential scanning calorimetry (DSC), X-ray diffraction (XRD) and high resolution electron microscopy (HREM). It was shown that the crystallization in the examined alloys proceeds in three stages (DSC maxima). The two first stages are attributed to formation of solid solution of fcc Al(RE) nanograins in amorphous matrix. In the third stage the precipitation of ternary compound Al19Ni5RE3 of the orthorhombic Al19Ni5Gd3-type structure was observed. A partial substitution of Ni by Fe causes a change of stoichiometry and crystal structure of the ternary compounds: Al8TM4RE (TM = Fe, Ni; RE = Y, Gd) of the tetragonal ThMn12 (Al8Mn4Ce)-type structure. A partial replacing of Y atoms by Gd in the Al87Y5Ni8 based alloy shifts the Al(RE) nanocrystallization to lower temperatures. In contrast to this a partial replacing of Ni by Fe shifts the nanocrystallization to higher temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号