首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B2O3 samples with silver impurities, X-ray irradiated at 77 K and then heated to 300 K, exhibit the presence of Ag+2 molecular ions. It has been found that formation of Ag+2 centres occurs with the participation of neutral silver atoms according to the reaction Ag0 + Ag+ → Ag+2. The EPR spectra of Ag+2 have been investigated and the parameters of the spin Hamiltonian have been determined. Under the action of light, λ = 390 nm, the Ag+2 centres were observed to undergo photochemical decomposition into Ag0 atoms and Ag+ ions.The EPR spectra of Ag0 atoms have also been studied in great detail. The effect of light irradiation and temperature variation on the properties of these atoms has been investigated.  相似文献   

2.
We investigated the scintillation properties of Cs2LiGdCl6:Ce3+ as a function of the Ce concentration. X-ray excited luminescence spectra of the scintillation material showed broad emission bands between 360 and 460 nm, with two overlapping peaks, due to the d→f transitions on Ce3+ ions. The samples provide good scintillation results. The energy resolution was found to be 5.0% (FWHM) at 662 keV for 10% Ce sample. Under γ-ray excitation, Cs2LiGdCl6:Ce3+ showed three exponential decay time components of about 130–200 ns decay time constant. The light output of the investigated samples was 20,000 photons/MeV for a 10% Ce concentration. The light output deviation from the linear response is within 7% between the energy range of 31 and 1333 keV. Overall, the scintillation properties confirm that Cs2LiGdCl6:Ce3+ single crystal is a promising candidate for medical imaging and radiation detection.  相似文献   

3.
The solubility of Ag2O was measured for the Na2O–B2O3 and Na2O–B2O3–Al2O3 system with the rotating crucible method and static method, respectively, under air atmosphere at temperatures ranging from 1273 to 1423 K. The contamination of melts from crucibles could be avoided by the rotating crucible method, with which it became possible to measure the solubility of Ag2O for the Na2O–B2O3 system above the melting point of Ag for the first time. It was found that the addition of Na2O decreases the solubility of Ag2O while the addition of Al2O3 had little effect on the solubility. The effect of Na2O and Al2O3 on the solubility of Ag2O is expressed by interaction coefficients and is analyzed in terms of the basicity of melts. The solubility of Ag2O in Na2O–B2O3–Al2O3 melts increased with increased temperature. This phenomena was explained by a small enthalpy change in oxidation of silver.  相似文献   

4.
Qiang Mei 《Journal of Non》2003,324(3):264-276
The glass forming range of the Ag2S + B2S3 + GeS2 ternary system was investigated for the first time and a wide range of ternary glasses were obtained. The Archimedes’ method was used to determine the densities of the Ag-B-Ge glasses. The thermal properties of these thioborogermanate glasses were studied by DSC and TMA. The Raman, IR and NMR spectroscopy were used to explore the short-range order structure of the binary (Ag-B) and (Ag-Ge) and ternary (Ag-B-Ge) glasses. The results show the presence of bridging sulfur tetrahedral units, GeS4/2 and AgBS4/2, and trigonal units, BS3/2, in the ternary glasses. Non-bridging sulfur units, AgSGeS3/2 and Ag3B3S3S3/2 six membered rings, are also observed in these glasses at higher Ag2S modification levels because the further addition of Ag2S results in the degradation of the bridging structures to form non-bridging structures. The NMR studies show that Ag2S goes into the GeS2 subnetwork to form Ag3S3GeS1/2 groups before going to the B2S3 subnetwork. In doing so, it is suggested that B10S20 supertetrahedra exist in Ag2S + B2S3 and Ag2S + B2S3 + GeS2 glasses. Significantly B-S-Ge bonds form in the B2S3 + GeS2 glasses, whereas they appear to be absent in the ternary glasses. From these observations, a structural model for these glasses has been developed and proposed.  相似文献   

5.
The growth and characterization of YAl3(BO3)4 (YAB), a potential nonlinear optical crystal for the fourth harmonic generation of Nd:YAG laser, was reported. Using top-seeded solution growth method, a YAB crystal with the dimensions of 16×16×18 mm3 was obtained from B2O3–Li2O flux system. The advantages of this flux system and the growth process were discussed in detail. The as-grown YAB crystal was verified by powder X-ray diffraction. The transparency spectra indicated that the cut-off edge of the as-grown YAB was 170 nm. The fourth harmonic generation of a frequency doubled Nd:YAG laser, from 532 to 266 nm, was carried out with a YAB crystal doubler for the first time. Output pulse power obtained was 2.4 mW at 266 nm and the conversion efficiency from 532 to 266 nm was about 15.6%.  相似文献   

6.
Er2O3-doped Bi2O3-B2O3-Ga2O3 glasses were prepared by the conventional melt-quenching method, and the Er3+:4I13/2 → 4I15/2 fluorescence properties are studied for different Er3+ concentrations. when the Er2O3 concentration increases from 0.03 to 3.0 mol%, the measured lifetime of Er3+:4I13/2 level decrease from 2.24 to 0.9 m s, and from 0.25 to 0.20 m s for the Er3+:4I11/2 level. The fast energy migration among Er3+ ions cause the reduction of lifetime of the 4I13/2 level, whereas the change in the 4I11/2 level is mainly due to a cooperative upconversion process (4I11/24I11/2) → (4F7/24I15/2). Based on the dipole-dipole interaction theory, the interaction parameter, CEr,Er, for the migration rate of Er3+:4I13/2 ↔ 4I13/2 was calculated to be 32 × 10−40 cm6 s−1.  相似文献   

7.
The well known and characterized fast ion conducting (FIC) LiI + Li2S + GeS2 glass-forming system has been further optimized for higher ionic conductivity and improved thermal and chemical stability required for next generation solid electrolyte applications by doping with Ga2S3 and La2S3. These trivalent dopants are expected to eliminate terminal and non-bridging sulfur (NBS) anions thereby increasing the network connectivity while at the same time increasing the Li+ ion conductivity by creating lower basicity [(Ga or La)S4/2] anion sites. Consistent with the finding that the glass-forming range for the Ga2S3 doped compositions is larger than that for the La2S3 compositions, the addition of Ga2S3 is found to eliminate NBS units to create bridging sulfur (BS) units that not only gives an improvement to the thermal stability, but also maintains and in some cases increases the ionic conductivity. The compositions with the highest Ga2S3 content showed the highest Tgs of ∼325 °C. The addition of La2S3 to the base glasses, by comparison, is found to create NBS by forming high coordination octahedral LaS63− sites, but yet still improved the chemical stability of the glass in dry air and retained its high ionic conductivity and thermal stability. Significantly, at comparable concentrations of Li2S and Ga2S3 or La2S3, the La2S3-doped glasses showed the higher conductivities. The addition of the LiI to the glass compositions not only improved the glass-forming ability of the compositions, but also increased the ionic conductivity glasses. LiI concentrations from 0 to 40 mol% improved the conductivities of the Ga2S3 glasses from ∼10−5 to ∼10−3 (Ω cm)−1 and of the La2S3 glasses from ∼10−4 to ∼10−3 (Ω cm)−1 at room temperature. A maximum conductivity of ∼10−3 (Ω cm)−1 at room temperature was observed for all of the glasses and this value is comparable to some of the best Li ion conductors in a sulfide glass system. Yet these new compositions are markedly more thermally and chemically stable than most Li+ ion conducting sulfide glasses. LiI additions decreased the Tgs and Tcs of the glasses, but increased the stability towards crystallization (Tc − Tg).  相似文献   

8.
This paper describes the preparation and characterization of lithium fluoroalkylphosphate-containing composite polymer electrolyte based on a polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP) matrix. A mixture of ethylene carbonate and diethyl carbonate was used as a plasticizing agent and nanoscopic Al2O3 as a filler. The membranes were characterized by ac impedance, SEM, DSC, FTIR and fluorescence. An electrolyte with 2.5 wt% Al2O3 exhibited a conductivity of 9.8 × 10−4 S cm−1 at ambient temperature. It was found that filler contents above 2.5 wt% rendered the membranes less conducting.  相似文献   

9.
Measurements of the electrical conductivity of Ag-doped bulk As2S3 glasses have been made as functions of temperature, pressure, frequency and Ag doping level. A Debye-like loss peak was observed near 104 Hz. The frequency of the loss peak is dependent on temperature, pressure and doping level, but these dependences are different from those of the dc conductivity. The ac loss is attributed to the Maxwell-Wagner losses characteristic of inhomogeneous materials. The materials are presumed to be inhomogeneous mixtures of As2S3 and Ag2S. We have also searched unsuccessfully for ac conductance in several bulk chalcogenide glasses.  相似文献   

10.
Reduction in the temperature coefficient of the optical path length, dS/dT of Li2O-Al2O3-SiO2 glass-ceramics with near-zero thermal expansion coefficient was attempted using control of the temperature coefficient of electronic polarizability, ?, and the thermal expansion coefficient, α. The dS/dT value of 2.6 mol% B2O3-doped glass-ceramic was 12.5  × 10−6/°C, which was 0.9 ×  10−6/°C smaller than that of B2O3-free glass-ceramic. On the other hand, reduction in dS/dT through B2O3 doping was not confirmed in precursor glasses. Results showed that reduction in dS/dT of the glass-ceramic through B2O3 doping is caused by the reduction in ?. The reduction in ? from B2O3 doping was probably attributable to numerical reduction in non-bridging oxide ions with larger ? value by the concentration of boron ions in the residual glass phase. In addition, application of hydrostatic pressure during crystallization was effective to inhibit precipitation of β-spodumene solid solution, which thereby decreases dS/dT. The dS/dT value of B2O3-doped glass-ceramic crystallized under 196 MPa was 11.7 ×  10−6/°C. That value was slightly larger than that of silica glass. The α value of this glass-ceramic was smaller than that of silica glass.  相似文献   

11.
A high optical quality erbium doped Lu2SiO5 single crystal has been grown by the Czochralski method. The distribution coefficient of Er3+ was measured to be ∼0.926. The absorption and emission spectra as well as the fluorescence decay curve of the excited state 4I13/2 were measured at room temperature. The spectroscopic parameters were calculated using the Judd–Ofelt theory, and the J–O parameters Ω2, Ω4 and Ω6 were found to be 4.451×10-20, 1.614×10-20 and 1.158×10-20 cm2, respectively. The room-temperature fluorescence lifetime of the Er3+4I13/24I15/2 transition was measured to be 7.74 ms. The absorption and emission cross-section as well as the gain cross-section in the eye-safe regime of 1400–1700 nm were also determined and discussed.  相似文献   

12.
Single crystal of Yb:LuAl3(BO3)4(Yb:LuAB) was grown by the flux method for the first time. The cell parameters of the grown crystal were estimated by X-ray diffraction analysis. The result indicates the symmetry of trigonal space group R32, with lattice parameters a=b=9.26372 Å, c=7.21405 Å, V=536.14 Å3, and Z=4. The absorption and emission spectra of Yb:LuAB crystal at room temperature has also been studied. The fluorescence lifetime for Yb:LuAB crystal is about 1.48 ms. The heat capacity was measured from 25 to 500 °C. Its second harmonic generation efficiency in LuAl3(BO3)4 crystal is 3–4 times that of KDP crystal. These results show that Yb:LuAB crystal would be a potential self-frequency-doubling laser crystal.  相似文献   

13.
Glasses were prepared by the melt-quenching method in the ternary system Pb(PO3)2-WO3-PbF2 and doped with Er3+ in order to prepare luminescent transparent glass-ceramics. This work focused on thermal and structural characterization of tungsten lead-phosphate glasses and crystallization study for preparing transparent glass-ceramics. Thermal properties such as thermal stability and crystallization behavior upon heating were investigated by DSC in function of PbF2 content. For low PbF2 concentrations, only one crystallization peak due to Pb3(PO4)2 is observed whereas samples containing more than 15% of PbF2 present another exothermic event at lower temperatures related with precipitation of PbF2, Pb2P2O7 and Pb2OF2. Structural investigations by Raman spectroscopy suggest that PbF2 modifies the tungsten-phosphate network through the formation of P―F and P―O―Pb bonds but the average network connectivity remains almost constant. A crystallization study has been performed by DSC to investigate the dominant crystallization mechanisms in these glasses and it has been established that Pb3(PO4)2 is nucleated on the surface whereas PbF2, Pb2P2O7 and Pb2OF2 crystallize dominantly from the glassy bulk. Transparent glass-ceramics containing nanosized PbF2 crystallites were also prepared by suitable heat-treatment on the glass sample containing 20% of PbF2 and Raman microscopy of these glass-ceramics supports the crystallization mechanisms determined by DSC.  相似文献   

14.
Two phase transitions are revealed for the first time in Ag3Sc2(PO4)3 single crystals in the vicinity of the temperatures 303 and 165–180 K. It is established that the phase transition at 303 K corresponds to the well-known phase transition to the superionic state in Na3Sc2(PO4)3 single crystals in the temperature range 423–433 K, whereas the phase transition observed in the temperature range 170–180 K corresponds to the phase transition from the rhombohedral to monoclinic phase at about 320 K in the monoclinic Na3Sc2(PO4)3 single crystals. It is also established that rhombohedral Na3Sc2(PO4)3 single crystals undergo the second phase transition. __________ Translated from Kristallografiya, Vol. 50, No. 1, 2005, pp. 122–126. Original Russian Text Copyright ? 2005 by Shilov, Atovmyan, Kovalenko.  相似文献   

15.
The crystal growth kinetics of antimony trisulfide in (GeS2)0.1(Sb2S3)0.9 glass has been studied by microscopy and DSC. The linear crystal growth kinetics has been confirmed in the temperature range 492 ? T ? 515 K (EG = 405 ± 7 kJ mol−1). The applicability of standard growth models has been assessed. From the crystal growth rate corrected for viscosity plotted as a function of undercooling it has been found that the most probable mechanism is interface controlled 2D nucleated growth. The non-isothermal DSC data, corresponding to the bulk sample, can be described by the Johnson-Mehl-Avrami equation.  相似文献   

16.
Robert Carl 《Journal of Non》2007,353(3):244-249
Glasses with the compositions xNa2O · 10MgO · (90 − x)SiO2, 10Na2O · xMgO · (90 − x)SiO2, 5Na2O · 15MgO · xAl2O3 · (80 − x)SiO2, xNa2O · 10MgO · 10Al2O3 · (80 − x)SiO2, 10Na2O · 10MgO · xAl2O3 · (80 − x)SiO2, 10Na2O · 5MgO · 10Al2O3 · (80 − x)SiO2 were melted and studied using UV-vis-NIR spectroscopy in the wavenumber range from 5000 to 30 000 cm−1. At [Al2O3] > [Na2O], the UV-cut off is strongly shifted to smaller wavenumbers and the NIR peak at around 10 000 cm−1 attributed to Fe2+ in sixfold coordination gets narrower. Furthermore, the intensity of the NIR peak at 5500 cm−1 increases. This is explained by the incorporation of iron in the respective glass structures.  相似文献   

17.
Q. Qian  G.F. Yang  Z.M. Yang  Z.H. Jiang 《Journal of Non》2008,354(18):1981-1985
Spectroscopic properties of Er3+-doped Na2O-Sb2O3-B2O3-SiO2 glasses have been investigated for developing 1.5-μm broadband fiber amplifiers. An intense 1.5-μm near infrared emission with a broad full width at half maximum (FWHM) of 88 nm has been obtained for Er3+-doped 5Na2O-20Sb2O3-35B2O3-40SiO2 glass upon excitation with a 980 nm laser diode. The obtained emission cross-section of the 4I13/2 → 4I15/2 transition and the lifetime of the 4I13/2 level of Er3+ ions are 6.8 × 10−21 cm2 and 0.36 ms, respectively. It is noted that the product of the emission cross-section and the FWHM of the glass, σe × FWHM, is as great as 598.4 × 10−21 cm2 nm, which is comparable or higher than that of Er3+-doped bismuth-based and tellurite-based glasses. These special optical properties encourage in identifying them as important materials for potential applications in high performance optics and optical communication networks.  相似文献   

18.
The Er3+ doped transparent oxyfluoride glass ceramics were obtained by appropriate heat treatment of the precursor glasses with composition (mol%) 50SiO2-xPbF2-(50 − x)PbO-0.5ErF3. The microstructure and optical properties of the glasses and glass ceramics were determined by differential scanning calorimetry (DSC), X-ray diffraction (XRD), absorption spectra and luminescence spectra. The intensity of upconversion luminescence significantly increased in glass ceramics compared to that in precursor glass. The emission bands centered around 660 nm (4F9/2 → 4I15/2) and 410 nm (2H9/2 → 4I15/2) were simultaneously observed in glass ceramics but cannot be seen in the corresponding precursor glass. The influence of different PbF2 content on the microstructure and upconversion luminescence of the samples was analyzed in detail. The results indicated that with the increase of PbF2 content, the Ω2 was almost the same and the ratios of red to green upconversion luminescence decreased in glass ceramics.  相似文献   

19.
Manabu Ichikawa 《Journal of Non》2010,356(43):2235-2240
We prepared sulfide glasses based on a Ga2S3-GeS2-Sb2S3 system and investigated the compositional dependences of their physico-chemical properties and structure. Additivities were observed for density and refractive index; i.e., these properties were presented by the summation of the contribution from each component. With the increase of Sb2S3 content, the density, refractive index, and thermal expansion coefficient increased while the glass transition and softening temperatures decreased, and the short-wavelength absorption edge shifted to the longer wavelength side. These variations are expected from the incorporation of a heavy element (Sb) into the glasses. On the other hand, the replacement of GeS2 by Ga2S3 increased the density and refractive index, and shifted the short-wavelength absorption edge to the longer wavelength side. These variations were explained by the increase of the number densities of the cations with the replacement and the formation of metal-metal bonds. The latter was confirmed from the Raman spectra. We also investigated the effects of Ag2S incorporation on the optical properties. The incorporation of Ag2S increased the density and refractive index whereas the position of the short-wavelength absorption edge varied little. These results show the possibility of fabricating an optical waveguide by Ag incorporation into the glasses.  相似文献   

20.
Europium-doped NaY(PO3)4 single crystals have been synthesized by the flux method with sizes around 1 mm3. The unit cell parameters at room temperature refined by X-ray powder diffraction are a=7.1510(4) Å; b=13.0070(8) Å; c=9.6973(2) Å; β=90.606(3)°, Z=4 with the space group P21/n in monoclinic system. The present single crystals have a needle shape, they are elongated along the a crystallographic direction, and their size is in the 500 μm–1 mm range. The linear thermal expansion tensor parameters were determined, being the maximum value along the b direction, 16.1×10−6 K−1 and the minimum along the a direction being 11.7×10−6 K−1. The IR vibration modes attributed to the group P–O are consistent with the crystallographic data concerning the chain aspect of the phosphate anion. This material melts incongruently at 1141 K. Intense visible emissions attributed to Eu3+ 5D07F1, 5D07F2 and 5D07F4, electronic transitions have been observed after pumping at 355 nm at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号