首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pr(Fe0.4Co0.6)1.93 ribbons were prepared by a melt-spinning method. Their structure and magnetic properties are investigated as functions of wheel speed and annealing temperature. The as-spun ribbon consists of a Pr(Fe, Co)2 cubic Laves phase and an amorphous phase at a wheel speed of v≥35 m/s, while the non-cubic phases of PuNi3-type and rare earth appear when the speed lower than 30 m/s. A single Pr(Fe, Co)2 phase with MgCu2-type structure has been synthesized by the process for the wheel speed of v≥35 m/s and subsequent annealing at 500 °C for 30 min. The epoxy/Pr(Fe0.4Co0.6)1.93 composite has been produced by a cold isostatic pressing technique, and the magnetic properties have been investigated. The composite rod sample possesses good magnetostrictive properties, i.e., a large magnetostriction (λa=λλ) of 710 ppm at 800 kA/m and a dynamic coefficient d33 of 0.67 nm/A at 100 kA/m, and is of practical value.  相似文献   

2.
Polycrystalline La2−xPrxCa2xBa2Cu4+2xOz (LPCaBCO) compounds with x=0.1-0.5 were synthesized by solid-state reaction method and studied by room temperature X-ray diffraction, dc resistivity, dc magnetization and iodometry. The superconducting transition temperatures in these tetragonal triple perovskite compounds increases from 32 to 62 K (Tconset values) with increasing dopant concentration. The mixing of rare earth La3+ and Pr3+/4+ ions at rare earth site (La3+) along with substitution of divalent Ca2+ results in the shrinkage of unit cell volume. The contraction of unit cell volume due to larger ion being substituted by smaller ions, gives rise to creation of pinning centres in the unit cell leading to increase in critical current density and flux pinning.  相似文献   

3.
We review the methods of calculating the effective activation energy Ueff(T,B,J) for both transport measurements and magnetic decay, together with some theoretical models. Then, we apply these methods to our Hg-1223 single-phase superconductor to obtain the activation energy. Transport results give that the magnetic field and temperature dependence of the Ueff can be well described as U0B−α(1−T/Tc)m. Magnetic relaxation shows that the current density dependence of U(J) can be scaled onto a single curve, which can be considered as the activation energy at some temperature T0. The pinning mechanism in the measured temperature range does not change, and the activation energy depends separately on the three variables: T, B, and J, are responsible for the magnetic decay data scaling onto a single curve at various temperatures. As temperatures close to zero and near Tc, thermally assisted flux motion model is no longer valid since other processes dominate.  相似文献   

4.
Bulk polycrystalline samples of Eu2O3-doped MgB2 have been synthesized by a standard solid state reaction route and their structural and superconducting properties have been investigated. As a function of Eu2O3 content we have found a significant increase in the critical current density (Jc) and the irreversibility field (Hirr) in the magnetic field range 0–6 T. The XRD results reveal the presence of MgO and EuB6 secondary phases along with the main hexagonal phase of MgB2. The strain values and the lattice distortions have been found to increase almost linearly with the nominal Eu2O3 content. The observed significant improvement in Jc(H) and Hirr in the Eu2O3-doped MgB2 samples, thus is mainly attributed to the lattice distortions introduced by Eu2O3 doping.  相似文献   

5.
The temperature and AC field amplitude variations of AC susceptibility have been measured on pure and 5 wt% Ag doped (La1−xYx)2Ba2CaCu5Oz superconductors. The AC susceptibility as a function of field have been analyzed using Kim's critical state model. The temperature dependence of intergranular critical current density and the effective volume fractions of the grains have been estimated. The Ag doped samples show relatively large critical current density due to the improved intergranular coupling. The exponent of temperature variation of critical current density suggests that the weak links form superconductor-normal metal-superconductor (SNS) type of junctions for all the samples.  相似文献   

6.
The evolution of the phase composition and physicomechanical properties of ZrO2 + 4 mol % Y2O3 ceramics subjected to hot isostatic pressing and subsequent calcining in air is investigated. It is found that hot isostatic pressing results in the formation of an easily transformed phase Tet with a degree of tetragonality c/a=1.035, which determines high fracture toughness. After calcining in air, the phase Tet decomposes to form a nontransformed phase T′ with a degree of tetragonality c/a=1.005, which determines low fracture toughness.  相似文献   

7.
We report measurements of critical current in YBa2Cu3Ox films deposited on SrTiO3 substrates decorated with silver and gold nanodots. An increase in critical current in these films, in comparison with the films deposited on non-decorated substrates, has been achieved. We argue that this increase comes from the c-axis correlated extended defects formed in the films and originated from the nanodots. Additionally to creating extended defects, the nanodots pin them and prevent their exit from the sample during the film growth, thus keeping a high density of defects and providing a lower rate of decrease of the critical current with the thickness of the films. The best pinning is achieved in the samples with silver nanodots by optimising their deposition temperature. The nanodots grown at a temperature of a few hundred °C have a small diameter of a few nanometres and a high surface density of 1011–1012 particles/cm2. We give evidence of c-axis correlated extended defects in YBa2Cu3Ox films by planar and cross-sectional atomic force microscopy, transmission electron microscopy and angle-dependent transport measurements of critical current.  相似文献   

8.
MgB1.9C0.1 samples are synthesized under the ambient pressure (AP) and high pressure (HP), respectively. The further studies demonstrate different field-dependence of the critical current density Jc(H) in each sample. In the view of two-gap superconductivity in these samples, δTc pinning (resulting from the spatial fluctuations of the transition temperature) is dominant in the AP sample, while in the HP sample, both δTc and δl pinning (due to the mean-free-path fluctuations) act together and their contributions vary with temperature. Besides the improvement of Hc2(0), due to the different pinning mechanism, Jc(H) of the HP sample shows a slower decay with the increasing fields than that of the AP sample in high fields, which suggests a possible method of retarding the rapid decay of Jc(H) under elevated fields.  相似文献   

9.
The magnetoresistivity and critical current density of well characterized Si-nanoparticle doped and undoped Cu-sheathed MgB2 tapes have been measured at temperatures T≥28 K in magnetic fields B≤0.9 T. The irreversibility line Birr(T) for doped tape shows a stepwise variation with a kink around 0.3 T. Such Birr(T) variation is typical for high-temperature superconductors with columnar defects (a kink occurs near the matching field B?) and is very different from a smooth Birr(T) variation in undoped MgB2 samples. The microstructure studies of nanoparticle doped MgB2 samples show uniformly dispersed nanoprecipitates, which probably act as a correlated disorder. The observed difference between the field variations of the critical current density and pinning force density of the doped and undoped tape supports the above findings.  相似文献   

10.
Effect of 3.4 wt.% C and 5 wt.% SiC doping into the standard in situ (IN) process and mechanically alloyed (MA) MgB2 was studied. Powders of IN and MA process were carried out in air and in argon filled glove box, respectively. Wire samples were prepared by two-axial rolling deformation of IN and MA powders inside the Ti tube. Titanium as sheath material allows to use higher sintering temperatures, we used 700 °C and 800 °C for 30 min in Argon. Critical current densities (Jc) were measured at variable temperatures 4.2 K, 10 K, 15 K and 20 K in the external magnetic fields ranging to 15 T. Critical temperatures, upper critical fields and irreversibility fields of IN and MA with SiC and C additions are compared and discussed. The highest transport properties were observed for wires with MA SiC doped MgB2 in the whole scale of temperatures 4.2–20 K. Upper critical field was rapidly enhanced in the case of carbon doped MA samples at 4.2 K. MA samples have shown decreased Jc values for higher temperatures (15 K, 20 K), in some case even worse than for the not doped reference IN sample. Carbon substitution and grain connectivity of analyzed samples are compared and discussed. Presented results show that for 20 K applications some new ways (additions) have to be found for increasing the Jc substantially.  相似文献   

11.
The effect of Mn substitution for Cu in mixed-valence Mn doped La1.85−(4/3)xSr0.15+(4/3)xCu1−xMnxO4 (x=0.06) has been investigated by electric resistivity, magnetization and electron spin resonance experiments. Coexistence of superconductivity and ferromagnetism was observed.  相似文献   

12.
Low-frequency internal friction was studied at a torsional-vibration frequency of 24 Hz in polycrystalline samples of ZrO2 + 4 mol % Y2O3 ceramics. The samples were prepared using cold isostatic pressing of a powder followed by sintering in air, hot isostatic pressing of the sample in an argon atmosphere, subsequent mechanical deformation of the surface, and further calcination in air. The x-ray phase analysis method is used to study the variation in the phase composition after mechanical deformation of the sample surface followed by calcination in air. The internal friction was measured in the temperature range 280–380 K on a sample subjected to calcination in air. At 315 K, an internal-friction peak was revealed, which is explained by stress relaxation at the boundaries of the T’-phase domains.  相似文献   

13.
A contact-free method to obtain the current-voltage characteristics (CVC) of hard superconductors by measuring the relaxation of the magnetization in a perpendicular magnetic field is developed. The relaxation curves obtained for melt-textured YBCO samples are well fitted by curves calculated within the electrodynamic model using a power-law CVC. This procedure uses only two fitting parameters, namely, the critical sheet current Jc and the exponent m of the power-law CVC.  相似文献   

14.
The magnetic properties of Y2Fe17−xGax for 3≤x≤7 and Gd2Fe17−xGax for 5≤x≤7 have been investigated using 57Fe Mössbauer spectroscopy. These compounds have the rhombohedral Th2Zn17 structure. X-ray diffraction analysis of aligned powders shows that the easy direction of magnetization is parallel to the c-axis in Y2Fe10Ga7 and Gd2Fe10Ga7 and is perpendicular to the c-axis in Y2Fe14Ga3, Y2Fe12Ga5, Gd2Fe12Ga5 and Gd2Fe11Ga6. Mössbauer studies indicate that those samples are ordered ferromagnetically. The 57Fe hyperfine field decreases with increasing Ga content. This decrease results from the decreased magnetic exchange interactions resulting from Ga substitution. The average isomer shift, δ, for R2Fe17−xGax (R=Y and Gd) at room temperature is positive and the magnitude of δ increases with increasing Ga content.  相似文献   

15.
The noble metal diboride AuB2, a potential candidate for superconductor, is studied by an ab initio method in comparison to the superconducting MgB2. The results, described in terms of equilibrium lattice constants, bulk modulus, pressure derivative of bulk modulus and their in- and out-of-plane linear values, volume coefficient of Tc, density of states, band structure, show some similarity as well as dissimilarity between the behaviour of the two compounds. The implications for the behaviour are discussed.  相似文献   

16.
We report magnetization measurements of grain-aligned Ba2Ca2Cu3O6(O,F)2 with Tc?108 K. The interlayer distance of the material is the shortest among known tri-layer superconductors. Unexpectedly, the magnetization data show that the coupling strength between CuO2 layers is rather weak. A direct reflection of the weak coupling is highly suppressed irreversibility line, i.e. a broad reversible region in H-T plane. The decoupling field obtained from the irreversibility line is less than 0.1 T, which is comparable with that of quasi two-dimensional superconductor Bi2Sr2CaCu2O8+δ. Comparison of data with the Hao-Clem model gives characteristic parameters [ξab(0) and λab(0)] and the critical fields [Hc(0) and Hc2c(0)]. A large value of penetration depth, λab(0)=240 nm reflects a small carrier concentration in CuO2 planes, and explains the reason of the weak interlayer coupling.  相似文献   

17.
18.
The effects of Cr doping on Mn sites in the electron-doped manganites La0.9Te0.1MnO3 have been studied by preparing the series La0.9Te0.1Mn1−xCrxO3 (0.05≤x≤0.20). Upon Cr doping, both the Curie temperature TC and magnetization M are suppressed. The resistivity measurements indicate that there exists a weak metal-insulator (M-I) transition for the sample with x=0.05, with an increase in the doping level, the M-I transition disappears and the resistivity increases. Thermopower S(T) exhibits a maximum near TC for all samples. By fitting the S(T) and ρ(T) curves, it is found that the temperature dependences of both S(T) and ρ(T) in the high temperature paramagnetic (PM) region follow the small polaron conduction (SPC) mechanism for all samples. The fitting parameters obtained imply changes of both the average-hopping distance of the polarons and the polaron concentration with Cr doping in our studied samples. In the case of the thermal conductivity κ(T), the variation of κ(T) is analyzed based on the combined effects due to the suppression of the local Mn3+O6 Jahn-Teller (JT) lattice distortion because of the substitution of Cr3+ for Mn3+ ions, which results in the increase in κ, and the introduction of the disorder due to Cr-doping, which contributes to the decrease in κ.  相似文献   

19.
We carried out the heat capacity calculation of the magnetoresistance compounds EuMnO3 and Eu0.7A0.3MnO3 (where A=Ca and Sr) as a function of temperature from 5 to 100 K, using the Rigid Ion Model (RIM). The results on heat capacity for EuMnO3 and Eu0.7A0.3MnO3 (A=Ca and Sr) obtained by us are in good agreement with the measured values. Although strong electron–phonon interactions are present in these compounds but the lattice part of the specific heat also deserves proper attention. The parent compound EuMnO3 exhibits two magnetic transitions at 35 and 47 K due to weak ferromagnetic (FM) component and antiferromagnetic (AF) ordering. In addition, we have reported cohesive energy (φ), molecular force constant (f), compressibility (β), Restrahalen frequency (υ0), Debye temperature (θD) and Gruneisen parameter (γ) in the temperature range 5 K?T?100 K.  相似文献   

20.
The ceramic sample of Y0.85Ca0.15Ba2Cu3O7−δ was prepared by standard solid-state reaction method, and samples with different oxygen concentration were obtained by quenching from high temperature. The internal friction was measured using the vibrating reed method from liquid-nitrogen temperature to room temperature at kilohertz frequency. An internal friction peak was observed around 250 K in Y0.85Ca0.15Ba2Cu3O7−δ quenched from 1023 K. The peak is related to the one observed around 220 K (labeled as P3 peak) in undoped YBa2Cu3O7−δ (Y123). This result shows the dependence of P3 peak on carriers density and P3 peak has a strong correlation to the abnormal behavior of Y123 in the underdoped range. The variation of two low temperature thermal activated relaxation peaks (P1 and P2) on oxygen content were also investigated. And consistent explanations were given based on all recent researches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号