首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
This article deals with the question, to what extent damping due to nonsmooth Coulomb friction may affect the stability and bifurcation behavior of vibrational systems with self-excitation due to negative effective damping which??for the smooth case??is related to a Hopf bifurcation of the steady state. Without damping due to Coulomb friction, the stability of the trivial solution is controlled by the effective viscous damping of the system: as the damping becomes negative, the steady state loses stability at a Hopf point. Adding Coulomb friction changes the trivial solution into a set of equilibria, which??for oscillatory systems??is asymptotically stable for all values of effective viscous damping. The Hopf point vanishes and an unstable limit cycle appears which borders the basin of attraction of the equilibrium set. Moreover, the influence of nonlinear damping terms is discussed. The effect of Coulomb frictional damping may be seen as adding an imperfection to the classical smooth Hopf scenario: as the imperfection vanishes, the behavior of the smooth problem is recovered.  相似文献   

2.
ABSTRACT The title problem is studied, with emphasis on the small damping and circulatory force case. It is shown that small internal and/or external damping forces and/or smalt (as well as large) circulatory forces in general destabilize an otherwise stable gyroscopic conservative system. A condition for no destabilizing effects of these small forces is obtained, A concept of "perfect" system in elastic stability of nonconservative problems is also presented. An example problem is given for demonstration purposes.  相似文献   

3.
In this paper, the occurrence of various types of bifurcation including symmetry breaking, period-doubling (flip) and secondary Hopf (Neimark) bifurcations in milling process with tool-wear and process damping effects are investigated. An extended dynamic model of the milling process with tool flank wear, process damping and nonlinearities in regenerative chatter terms is presented. Closed form expressions for the nonlinear cutting forces are derived through their Fourier series components. Non-autonomous parametrically excited equations of the system with time delay terms are developed. The multiple-scale approach is used to construct analytical approximate solutions under primary resonance. Periodic, quasi-periodic and chaotic behavior of the limit cycles is predicted in the presence of regenerative chatter. Detuning parameter (deviation of the tooth passing frequency from the chatter frequency), damping ratio (affected by process damping) and tool-wear width are the bifurcation parameters. Multiple period-doubling and Hopf bifurcations occur when the detuning parameter is varied. As the damping ratio changes, symmetry breaking bifurcation is observed whereas the variation of tool wear width causes both symmetry breaking and Hopf bifurcations. Also, under special damping specifications, chaotic behavior is seen following the Hopf bifurcation.  相似文献   

4.
蓝昱群  关利南  古华光 《力学学报》2019,51(4):1122-1133
传统观念认为,负反馈容易使系统达到稳定平衡点而正反馈容易引起振荡.本研究基于神经元理论模型,提出了负反馈可以诱发稳定平衡点、也就是静息、变为振荡、也就是放电的新观点.在Hopf分岔点附近,作用在静息上的一次足够大的负向脉冲电流的抑制性刺激,能够引起一个动作电位及随后的衰减振荡的后电位;而能够在后电位上诱发出动作电位的负脉冲电流强度阈值也是衰减振荡的.在模型中,引入具有时滞($\tau$)的负反馈来模拟抑制性自突触,一个动作电位诱发的负反馈自突触电流会作用到比动作电位延迟$\tau$的后电位上.随时滞增加,能够诱发出放电的负反馈增益强度阈值呈现出具有衰减振荡特点的类似多重相干共振的特性,衰减振荡的周期与电流阈值曲线的周期以及分岔点附近的放电周期相关.另外,负反馈还能诱发出放电与静息共存的复杂行为.本研究的结果不仅揭示了负反馈的新的反常调控作用,还有助于理解在现实神经系统中存在的慢抑制性自突触的潜在功能.   相似文献   

5.
A single-node system introduced by Klarbring has provided insight into the non-uniqueness of solution in the quasi-static contact problem at the high coefficient of Coulomb friction. Here, we explore this issue for the two-node system under the slip displacement space in which the instantaneous condition is efficiently represented. In the paper, we identify a qualitatively different failure of the quasi-static evolution algorithm in which a more complex dynamic transition may occur. When the system evolves from the point where both-node discontinuity occurs, the transient evolution behavior involving a damping matrix is explored in order to investigate a final state of the two-node system. It is demonstrated that the final state is uniquely determined which is independent of the damping matrix.  相似文献   

6.
We investigate the control of friction-induced vibrations in a system with a dynamic friction model which accounts for hysteresis in the friction characteristics. Linear time-delayed position feedback applied in a direction normal to the contacting surfaces has been employed for the purpose. Analysis shows that the uncontrolled system loses stability via. a subcritical Hopf bifurcation making it prone to large amplitude vibrations near the stability boundary. Our results show that the controller achieves the dual objective of quenching the vibrations as well as changing the nature of the bifurcation from subcritical to supercritical. Consequently, the controlled system is globally stable in the linearly stable region and yields small amplitude vibrations if the stability boundary is crossed due to changes in operating conditions or system parameters. Criticality curve separating regions on the stability surface corresponding to subcritical and supercritical bifurcations is obtained analytically using the method of multiple scales (MMS). We have also identified a set of control parameters for which the system is stable for lower and higher relative velocities but vibrates for the intermediate ones. However, the bifurcation is always supercritical for these parameters resulting in low amplitude vibrations only.  相似文献   

7.
The asymptotic behavior of the principal eigenvalue for general linear cooperative elliptic systems with small diffusion rates is determined. As an application, we show that if a cooperative system of ordinary differential equations has a unique positive equilibrium which is globally asymptotically stable, then the corresponding reaction-diffusion system with either the Neumann boundary condition or the Robin boundary condition also has a unique positive steady state which is globally asymptotically stable, provided that the diffusion coefficients are sufficiently small. Moreover, as the diffusion coefficients approach zero, the positive steady state of the reaction-diffusion system converges uniformly to the equilibrium of the corresponding kinetic system.  相似文献   

8.
A nonlinear model of an aircraft braking system is presented and used to investigate the effects of damping on the stability in Chevillot et al. (Arch Appl Mech 78(12):949–963, 2008). It has been shown that the addition of damping into the equations of motion does not lead systematically to the stabilization of the system. In the case of a mode-coupling instability, there is indeed an optimal ratio between the modal damping coefficients of the two modes in coalescence, that maximize the stable area. But the stable area is not a sufficient criterion. In dynamics, the amplitude of the vibrations and the transient behavior characterized by the speed of increase of the oscillations are best indicators. In this paper, the same nonlinear model of the aircraft braking system is used to compute time-history responses by integration of the full set of the nonlinear dynamic equations. The aim of the study is to evaluate the effects of damping on the nonlinear dynamics of the brake. It is shown that damping may be very efficient to significantly reduce and slow down the increase of the friction-induced vibrations. But, in the same way as for the stability area, there exists a value of the damping ratio that optimizes the effects of damping.  相似文献   

9.
Inclined cables of cable-stayed bridges often experience large amplitude vibrations. One of the potential excitation mechanisms is dry inclined cable galloping, which has been observed in wind tunnel tests but which has not previously been fully explained theoretically. In this paper, a general expression is derived for the quasi-steady aerodynamic damping (positive or negative) of a cylinder of arbitrary cross-section yawed/inclined to the flow, for small amplitude vibrations in any plane. The expression covers the special cases of conventional quasi-steady aerodynamic damping, Den Hartog galloping and the drag crisis, as well as dry inclined cable galloping. A nondimensional aerodynamic damping parameter governing this behaviour is proposed, which is a function of only the Reynolds number, the angle between the wind velocity and the cable axis, and the orientation of the vibration plane. Measured static force coefficients from wind tunnel tests have been used with the theoretical expression to predict values of this parameter. Two main areas of instability (i.e. negative aerodynamic damping) have been identified, both in the critical Reynolds number region, one of which was previously observed in separate wind tunnel tests on a dynamic cable model. The minimum values of structural damping required to prevent dry inclined cable galloping are defined, and other factors in the behaviour in practice are discussed.  相似文献   

10.
We consider a pendulum with vertically oscillating support and time-dependent damping coefficient which varies until reaching a finite final value. Although it is the final value which determines which attractors eventually exist, the sizes of the corresponding basins of attraction are found to depend strongly on the full evolution of the dissipation. In particular, we investigate numerically how dissipation monotonically varying in time changes the sizes of the basins of attraction. It turns out that, in order to predict the behaviour of the system, it is essential to understand how the sizes of the basins of attraction for constant dissipation depend on the damping coefficient. For values of the parameters where the systems can be considered as a perturbation of the simple pendulum, which is integrable, we characterise analytically the conditions under which the attractors exist and study numerically how the sizes of their basins of attraction depend on the damping coefficient. Away from the perturbation regime, a numerical study of the attractors and the corresponding basins of attraction for different constant values of the damping coefficient produces a much more involved scenario: changing the magnitude of the dissipation causes some attractors to disappear either leaving no trace or producing new attractors by bifurcation, such as period doubling and saddle-node bifurcation. Finally, we pass to the case of an initially non-constant damping coefficient, both increasing and decreasing to some finite final value, and we numerically observe the resulting effects on the sizes of the basins of attraction: when the damping coefficient varies slowly from a finite initial value to a different final value, without changing the set of attractors, the slower the variation the closer the sizes of the basins of attraction are to those they have for constant damping coefficient fixed at the initial value. Furthermore, if during the variation of the damping coefficient attractors appear or disappear, remarkable additional phenomena may occur. For instance, it can happen that, in the limit of very large variation time, a fixed point asymptotically attracts the entire phase space, up to a zero-measure set, even though no attractor with such a property exists for any value of the damping coefficient between the extreme values.  相似文献   

11.
This paper uses the Reduced Order Model (ROM) method to investigate the nonlinear-parametric dynamics of electrostatically actuated MEMS cantilever resonators under soft Alternating Current (AC) voltage of frequency near half natural frequency of the resonator. The voltage is between the resonator and a ground plate, and provides a nonlinear parametric actuation for the resonator. Fringe effect and damping forces are included. The resonator is modeled as an Euler–Bernoulli cantilever. Two methods of investigations are compared, Method of Multiple Scales (MMS), and Reduced Order Model. Moreover, the instabilities (bifurcation points) are predicted for both cases, when the voltage is swept up, and when the voltage is swept down. Although MMS and ROM are in good agreement for small amplitudes, MMS fails to accurately predict the behavior of the MEMS resonator for greater amplitudes. Only ROM captures the behavior of the system for large amplitudes. ROM convergence shows that five terms model accurately predicts the steady-states of the resonator for both small and large amplitudes.  相似文献   

12.
In this paper we investigate the temporal asymptotic behavior of the solutions of the one-dimensional porous-elasticity problem when several damping effects are present. We show that viscoelasticity and temperature produce slow decay in time, and the same result is obtained when the porous viscosity is combined with microtemperatures. However, when the viscoelasticity is coupled with porous damping or with microtemperatures the decay is controlled by a negative exponential.  相似文献   

13.
Periodic sticking motions can occur in vibro-impact systems for certain parameter ranges. When the coefficient of restitution is low (or zero), the range of periodic sticking motions can become large. In this work the dynamics of periodic sticking orbits with both zero and non-zero coefficient of restitution are considered. The dynamics of the periodic orbit is simulated as the forcing frequency of the system is varied. In particular, the loci of Poincaré fixed points in the sticking plane are computed as the forcing frequency of the system is varied. For zero coefficient of restitution, the size of the sticking region for a particular choice of parameters appears to be maximized. We consider this idea by computing the sticking region for zero and non-zero coefficient of restitution values. It has been shown that periodic sticking orbits can bifurcate via the rising/multi-sliding bifurcation. In the final part of this paper, we describe three types of post-bifurcation behavior which occur for the zero coefficient of restitution case. This includes two types of rising bifurcation and a border orbit crossing event.  相似文献   

14.
韩维  金栋平  胡海岩 《力学学报》2003,35(3):303-309
研究两自由度参数激励系统的非线性动力学与控制问题.利用Lagrange方程建立含反馈控制的参激捅及其驱动机构组成的系统动力学方程,以多尺度方法获得一阶近似控制方程.然后,对系统受一阶摸态参激主共振与一、二阶模态间3:1内共振联合作用下的幅额响应及其稳定性,以及反馈参数对系统稳态行为的影响作了详细分析.结果表明,响应的稳定域位置和大小取决于位移反馈,位移立方反馈改变了系统的非线性程度,速度反馈类似于阻尼,可使系统呈现自激振动特性.  相似文献   

15.
Flight tests of modern high-performance fighter aircraft reveal the presence of limit cycle oscillation (LCO) responses for aircraft with certain external store configurations. Conventional linear aeroelastic analysis predicts flutter for conditions well beyond the operational envelope, yet these store-induced LCO responses occur at flight conditions within the flight envelope. Several nonlinear sources may be present, including aerodynamic effects such as flow separation and shock-boundary layer interaction and structural effects such as stiffening, damping, and system kinematics. No complete theory has been forwarded to accurately explain the mechanisms responsible. This research examines a two degree-of-freedom aeroelastic system which possesses kinematic nonlinearities and a strong nonlinearity in pitch stiffness. Nonlinear analysis techniques are used to gain insight into the characteristics of the behavior of the system. Numerical simulation is used to verify and validate the analysis. It is found that when system damping is low, the system clearly exhibits nonlinear interaction between aeroelastic modes. It is also shown that although certain applied forcing conditions may appear negligible, these same forces produce large amplitude LCOs under specific realizable circumstances.  相似文献   

16.
An analysis is made of the nonlinear interactions between flow in the subglottal vocal tract and glottis, sound waves in the subglottal system and a mechanical model of the vocal folds. The mean flow through the system is produced by a nominally steady contraction of the lungs, and mechanical experiments frequently involve a ‘lung cavity’ coupled to an experimental subglottal tube of arbitrary or ill-defined effective length L, on the basis that the actual value of L has little or no influence on excitation of the vocal folds. A simple, self-exciting single-mass mathematical model of the vocal folds is used to investigate the sound generated within the subglottal domain and the unsteady volume flux from the glottis for experiments where it is required to suppress feedback of sound from the supraglottal vocal tract. In experiments where the assumed absorption of sound within the sponge-like interior of the lungs is small, the influence of changes in L can be very significant: when the subglottal tube behaves as an open-ended resonator (when L is as large as half the acoustic wavelength) there is predicted to be a mild increase in volume flux magnitude and a small change in waveform. However, the strong appearance of second harmonics of the acoustic field is predicted at intermediate lengths, when L is roughly one quarter of the acoustic wavelength. In cases of large lung damping, however, only modest changes in the volume flux are predicted to occur with variations in L.  相似文献   

17.
A nonlinear time-varying dynamic model for a multistage planetary gear train, considering time-varying meshing stiffness, nonlinear error excitation, and piece-wise backlash nonlinearities, is formulated. Varying dynamic motions are obtained by solving the dimensionless equations of motion in general coordinates by using the varying-step Gill numerical integration method. The influences of damping coefficient, excitation frequency, and backlash on bifurcation and chaos properties of the system are analyzed through dynamic bifurcation diagram, time history, phase trajectory, Poincaré map, and power spectrum. It shows that the multi-stage planetary gear train system has various inner nonlinear dynamic behaviors because of the coupling of gear backlash and time-varying meshing stiffness. As the damping coefficient increases, the dynamic behavior of the system transits to an increasingly stable periodic motion, which demonstrates that a higher damping coefficient can suppress a nonperiodic motion and thereby improve its dynamic response. The motion state of the system changes into chaos in different ways of period doubling bifurcation, and Hopf bifurcation.  相似文献   

18.
We investigate in detail the passive control of vortex-induced vibrations of a freely oscillating circular cylinder using a non-linear energy sink consisting of a secondary system having linear damping and an essential non-linear cubic stiffness. The loads on the cylinder are calculated using a direct numerical simulation of the incompressible flow over the cylinder using a parallel computational fluid dynamics code. A strongly coupled fluid structure control numerical model is used to determine the responses of the cylinder and the sink as well as the flow. We vary the sink parameters (mass and damping) and determine their effects on the response of the coupled system. We find multiple stable responses of the coupled system for different mass ratios and damping coefficient of the sink, depending on the initial conditions.  相似文献   

19.
A nonlinear system with two degrees of freedom is considered. The system consists of an oscillator with relatively large mass, which approximates some continuous elastic system, and an oscillator with relatively small mass, which damps the vibrations of the elastic system. A modal analysis reveals a local stable mode that exists within a rather wide range of system parameters and favors vibration damping. In this mode, the vibration amplitudes of the elastic system and the damper are small and high, respectively__________Translated from Prikladnaya Mekhanika, Vol. 41, No. 1, pp. 102–111, January 2005.  相似文献   

20.
Friction-induced vibrations due to coupling modes can cause severe damage and are recognized as one of the most serious problems in industry. In order to avoid these problems, engineers must find a design to reduce or to eliminate mode coupling instabilities in braking systems. Though many researchers have studied the problem of friction-induced vibrations with experimental, analytical and numerical approaches, the effects of system parameters, and more particularly damping, on changes in stable-unstable regions and limit cycle amplitudes are not yet fully understood.The goal of this study is to propose a simple non-linear two-degree-of-freedom system with friction in order to examine the effects of damping on mode coupling instability. By determining eigenvalues of the linearized system and by obtaining the analytical expressions of the Routh–Hurwitz criterion, we will study the stability of the mechanical system's static solution and the evolution of the Hopf bifurcation point as functions of the structural damping and system parameters. It will be demonstrated that the effects of damping on mode coupling instability must be taken into account to avoid design errors. The results indicate that there exists, in some cases, an optimal structural damping ratio between the stable and unstable modes which decreases the unstable region. We also compare the evolution of the limit cycle amplitudes with structural damping and demonstrate that the stable or unstable dynamic behaviour of the coupled modes are completely dependent on structural damping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号