共查询到20条相似文献,搜索用时 15 毫秒
1.
Sukontason K Sukontason KL Piangjai S Boonchu N Chaiwong T Ngern-Klun R Sripakdee D Vogtsberger RC Olson JK 《Micron (Oxford, England : 1993)》2004,35(8):671-679
Antennal sensilla of some forensically important fly species in the families Calliphoridae (Chrysomya megacephala, Chrysomya rufifacies, Chrysomya nigripes and Lucilia cuprina), Sarcophagidae (Parasarcophaga dux) and Muscidae (Musca domestica) were studied using scanning electron microscopy. Five types of sensilla were observed: trichoid, basiconic, coeloconic, styloconic and sensory pit. Only trichoid sensilla are found on the scape of the antenna, while both trichoid and styloconic sensilla are located on the antennal pedicels of all species studied. Basiconic sensilla are the most numerous of the sensilla found on the antennae of both sexes of all fly species studied and are comprised of two subtypes: large and small basiconic sensilla. Coeloconic sensilla are characterized by short pegs, with either grooved or smooth surfaces, that are sunken into deep depressions. No marked difference was observed in the number, morphological structure or distributional pattern of any of the sensilla among the species studied, with the exception of there being more numerous sensory pits detected in female P. dux compared to the other species. The suggested function of each antennal sensillum was based on comparison with results of other investigations on similar sensilla. 相似文献
2.
Chien-Huang Tsai 《Applied Surface Science》2010,256(12):3789-3794
This paper describes the nanoscratch behavior of Zn1−xCdxSe epilayers grown using molecular beam epitaxy (MBE). Transmission electron microscopy (TEM), scanning electron microscopy (SEM), and Hysitron Triboscope nanoindenter techniques were employed to determine the microstructures, morphologies, friction coefficients (μ), and hardnesses (H) of these materials, and thereby propose an explanation for their properties in terms of nanotribological behavior. Nanoscratch analysis revealed that the coefficient of friction of the Zn1−xCdxSe epilayer system decreased from 0.172 to 0.139 upon increasing the Cd content (x) from 0.07 to 0.34. Furthermore, studies of the scratch wear depth under a ramping load indicated that a higher Cd content provided the Zn1−xCdxSe epilayers with a higher shear resistance, which enhanced the strength of the CdSe bonds. These findings suggest that the greater stiffness of the CdSe bond, relative to that of the ZnSe bond, enhances the hardness of the epilayers. Indeed, the effect of the Cd content on the growth of the Zn1−xCdxSe epilayers is manifested in the resulting nanotribological behavior. 相似文献
3.
We investigated the nanotribological properties of Zn1−xMnxO epilayers (0 ≤ x ≤ 0.16) grown by molecular beam epitaxy (MBE) on sapphire substrates. The surface roughness and friction coefficient (μ) were analyzed by means of atomic force microscopy (AFM) and hysitron triboscope nanoindenter techniques.The nanoscratch system gave the μ value of the films ranging from 0.17 to 0.07 and the penetration depth value ranging 294-200 nm when the Mn content was increased from x = 0 to 0.16. The results strongly indicate that the scratch wear depth under constant load shows that higher Mn content leads to Zn1−xMnxO epilayers with higher shear resistance, which enhances the Mn-O bond. These findings reveal that the role of Mn content on the growth of Zn1−xMnxO epilayers can be identified by their nanotribological behavior. 相似文献
4.
For in situ measurements of local electrical conductivity of well-defined crystal surfaces in ultrahigh vacuum, we have developed two kinds of microscopic four-point probe methods. One is a ‘four-tip STM prober’, in which independently driven four tips of scanning tunneling microscope (STM) are used for four-point probe conductivity measurements. The probe spacing can be changed from 500 nm to 1 mm. The other one is monolithic micro-four-point probes, fabricated on silicon chips, whose probe spacing is fixed around several μm. These probes were installed in scanning-electron-microscopy/electron-diffraction chambers, in which the structures of sample surfaces and probe positions were in situ observed. The probes can be positioned precisely on aimed areas on the sample with aid of piezo-actuators. With these machines, the surface sensitivity in conductivity measurements has been greatly enhanced compared with macroscopic four-point probe method. Then the conduction through the topmost atomic layers (surface-state conductivity) and influence of atomic steps upon conductivity could be directly measured. The STM prober is mainly described here. 相似文献
5.
Derming LianChien-Huang Tsai 《Applied Surface Science》2011,257(15):6391-6396
This paper presents an experimental study on the effect of the pretreatment procedure of Ni nanoparticles (NPs) on the growth of multiwalled carbon fiber (CNF) bundles by means of microwave plasma chemical vapor deposition (MPCVD). We used atomic force microscopy to investigate a series of pretreated Ni films. The structures and compositions of the CNFs on the via were investigated using scanning electron microscopy, high-resolution transmission electron microscopy, and Raman spectroscopy.The geometric shape of the Ni NPs was identified in terms of their roughness, which decreased upon increasing the pretreatment temperature, resulting subsequently in the synthesis of high-density CNFs. The diameter and shape of the Ni NPs were the dominant factors affecting the size and density of the CNFs bundles. We obtained CNFs that fully filled the via effectively; they might serve as potential interconnects in future nanodevices. 相似文献
6.
The Flavivirus genus is composed of many medically important viruses that cause high morbidity and mortality, which include Dengue and West Nile viruses. Various molecular and biochemical techniques have been developed in the endeavour to study flaviviruses. However, microscopy techniques still have irreplaceable roles in the identification of novel virus pathogens and characterization of morphological changes in virus-infected cells. Fluorescence microscopy contributes greatly in understanding the fundamental viral protein localizations and virus–host protein interactions during infection. Electron microscopy remains the gold standard for visualizing ultra-structural features of virus particles and infected cells. New imaging techniques and combinatory applications are continuously being developed to push the limit of resolution and extract more quantitative data. Currently, correlative live cell imaging and high resolution three-dimensional imaging have already been achieved through the tandem use of optical and electron microscopy in analyzing biological specimens. Microscopy techniques are also used to measure protein binding affinities and determine the mobility pattern of proteins in cells. This chapter will consolidate on the applications of various well-established microscopy techniques in flavivirus research, and discuss how recently developed microscopy techniques can potentially help advance our understanding in these membrane viruses. 相似文献
7.
本文利用扫描电镜观察了自制以及商品化原子吸收石墨管表面在使用期间的形貌变化,并对不同石墨管材料对分析性能的影响进行了讨论,从扫描电镜图片上观察到了一些有意义的现象。 相似文献
8.
Chlorophorus caragana Xie & Wang is a destructive wood-boring beetle that damages Caragana spp. bushes and is distributed in desert areas in north-west China. Using scanning electron microscopy and transmission electron microscopy, we observed the morphology and ultrastructure of antennal and posterior abdominal sensilla in C. caragana females, to discuss the putative functions of these sensilla in host location and oviposition behaviors.In total, seven types (24 subtypes) of sensilla were located on the antenna and posterior abdomen. On the antenna, there were Böhm's bristles (BB.); four subtypes of sensilla chaetica (Ch.1–Ch.4) characterized by non-porous surfaces and sensillum-lymph cavities without dendrites; two subtypes of sensilla trichodea (Tr.1 and Tr.2) with a tip pore and dendrites surrounded by dendritic sheaths; dome-shaped sensilla (Dom.) emerging from a deep cavity with one tip pore; four subtypes of sensilla basiconica (Ba.1–Ba.4) and one type of sensilla auricillica (Au.) with a porous cuticular surface and dendrites in the sensillum-lymph cavity; and one type of sensilla styloconica (Sty.) with grooves on the cuticular wall. On the posterior abdomen, there were four subtypes of sensilla chaetica (Ch.5–Ch.8); three subtypes of sensilla trichodea (Tr.3–Tr.5); and three subtypes of sensilla basiconica (Ba.5–Ba.7; Ba.5 had no groove in the cuticular wall, Ba.6 had one tip pore, and Ba.7 was located in a cuticular cavity). The antennal sensilla were believed to be mechanosensitive, chemosensitive, and sensitive to humidity and temperature, and to play roles in mating, host location and oviposition. The abdominal sensilla are believed to be related to oviposition behaviors. 相似文献
9.
We used scanning and transmission electron microscopy to study the typology, morphology, distributions, and ultrastructures of the antennal sensilla of Tetrigus lewisi Candèze, a predatory click beetle that feeds on longhorned beetles, such as, Monochamus alternatus (Coleoptera: Cerambycidae). We observed eight types of sensilla on the antennae, including sensilla chaetica (with three subtypes: ch.1, ch.2, ch.3), sensilla basiconica (subtypes: ba.1, ba.2, ba.3), sensilla trichodea (subtypes: tr.1, tr.2), as well as sensilla auricillica, sensilla coeloconica, sensilla campaniformia, sensilla styloconica and Böhm's bristles. Significant sexual dimorphism was found in the antenna morphology, as well as in the density of type 2 sensilla trichodea and type 1 sensilla basiconica. We observed thick cuticular walls on sensilla chaetica, sensilla trichodea and sensilla campaniformia; clear pore structures on sensilla trichodea, sensilla basiconica and sensilla auricillica; and double walls with spoke-channels on sensilla coeloconica. The chemoreception, mechanoreception and thermo-/hygro-reception functions were deduced from fine structures on the cuticular walls and the dendrites of the different sensilla types. We suggest that all these sensilla have important roles in the host location, mating and predatory behavior of T. lewisi. 相似文献
10.
Rectifying contact formation on n-type bulk single crystal ZnO using novel W2B or W2B5 metallization schemes was studied using current-voltage, scanning electron microscopy and Auger electron spectroscopy (AES) measurements. When a single Au overlayer was used to reduce the metal sheet resistance, the contacts were ohmic for all annealing conditions due to outdiffusion of Zn through the metal. By sharp contrast, when a bilayer of Pt/Au was used on top of the boride layers, rectifying contacts with barrier heights of ∼0.4 eV for W2B were obtained. The highest barrier height of 0.66 eV was achieved for W2B5 annealed at 600 °C, although at this condition the contact showed a reacted appearance and AES showed almost complete intermixing of the metallization. 相似文献
11.
Wen-Pin Wang Sheng-Rui Jian Huy-Zu Cheng Jenh-Yih Juang Chang-Pin Chou 《Applied Surface Science》2010,256(7):2184-2188
The field emission characteristics of carbon nanotubes (CNTs) grown by thermal chemical vapor deposition (CVD) and subsequently surface treated by high-density Ar plasma in an inductively coupled plasma reactive ion etching (ICP-RIE) with the various plasma powers were measured. Results indicate that, after treated by Ar plasma with power between 250 and 500 W, the emission current density of the CNTs is enhanced by nearly two orders of magnitude (increased from 0.65 to 48 mA/cm2) as compared to that of the as-grown ones. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to investigate the structural features relevant to the modified field emission properties of CNTs. The SEM images of CNTs subjected to a 500 W Ar plasma treatment exhibit obvious damages to the CNTs. Nevertheless, the turn-on fields decreased from 3.6 to 2.2 V/μm, indicating a remarkable field emission enhancement. Our results further suggest that the primary effect of Ar plasma treatment might be to modify the geometrical structures of the local emission region in CNTs. In any case, the Ar plasma treatment appears to be an efficient method to enhance the site density for electron emission and, hence markedly improving the electric characteristics of the CNTs. 相似文献
12.
We investigated cleavage surfaces perpendicular to the tenfold direction of as-grown decagonal Al-Ni-Co quasicrystals by scanning tunneling microscopy, Auger electron spectroscopy, and scanning electron microscopy. The cleavage surface is determined by a cluster-subcluster structure. The image contrast of the smallest features, 1-2 nm in diameter, is related to the columnar atom arrangements extending perpendicular to the cleavage plane, which are predicted by current models of the decagonal quasicrystal structure. No voltage dependence of the STM images is observed. The presence of surface states and an enhanced density of states are discussed. Heat-treatments of the cleaved Al-Ni-Co quasicrystal surfaces show nearly no changes in chemical composition and structure up to about 750 °C. This is correlated with a much lower concentration of vacancies in as-grown decagonal Al-Ni-Co quasicrystals as compared to that in as-grown icosahedral Al-Pd-Mn quasicrystals. 相似文献
13.
Electron-assisted chemical etching of oxidized chromium, CrOx, has been studied by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and atomic force microscopy (AFM). Two model substrates were used—10 nm CrOx deposited on Si(1 0 0) that was covered with either native oxide or a 20 nm Au/Pd alloy film. Using chlorine and/or oxygen as etching gases, the experiments were conducted in a customized high vacuum system, equipped with a high density electron source and a low pressure reaction cell. On both substrates, electron-assisted chemical etching of CiOx was detected by SEM, EDS and AFM. Making the method questionable for etching applications, there is substantial substrate damage associated with the etching. The SEM images indicate strongly inhomogeneous material removal, apparently initiated and propagated from specific but unidentified sites. In the experiments involving the Au/Pd film, there was phase separation of Au and Pd, and dewetting to form metallic islands. AFM data show that the etched holes were as deep as 200 nm, confirming relatively rapid etching of the Si substrate after the top layer of Cr oxide was removed. 相似文献
14.
Scanning tunneling microscopy (STM) and high resolution cross-sectional transmission electron microscopy (XTEM) studies have been used to investigate the formation of Ge nanocrystals grown on Si(1 0 0)-(2 × 1) surfaces by molecular beam epitaxy (MBE). We observe relatively high density of Ge islands where small ‘pyramids’, small ‘domes’ and facetted ‘domes’ of various sizes co-exist in the film. As revealed from XTEM images, a large fraction of islands, especially dome-shaped Ge islands have been found to have an aspect ratio of ∼1 (diameter):1 (height). Observation of truncated-sphere-shaped Ge islands with a narrow neck contact with the wetting layer is reported. 相似文献
15.
The growing use of nanoparticles in biomedical applications, including cancer diagnosis and treatment, demands the capability to exactly locate them within complex biological systems. In this work a correlative optical and scanning electron microscopy technique was developed to locate and observe multi-modal gold core nanoparticle accumulation in brain tumor models. Entire brain sections from mice containing orthotopic brain tumors injected intravenously with nanoparticles were imaged using both optical microscopy to identify the brain tumor, and scanning electron microscopy to identify the individual nanoparticles. Gold-based nanoparticles were readily identified in the scanning electron microscope using backscattered electron imaging as bright spots against a darker background. This information was then correlated to determine the exact location of the nanoparticles within the brain tissue. The nanoparticles were located only in areas that contained tumor cells, and not in the surrounding healthy brain tissue. This correlative technique provides a powerful method to relate the macro- and micro-scale features visible in light microscopy with the nanoscale features resolvable in scanning electron microscopy. 相似文献
16.
M. Godbole E.J. Olivier E. Coetsee H.C. Swart J.H. Neethling J.R. Botha 《Physica B: Condensed Matter》2012,407(10):1566-1569
Self-assembled InSb nanodots (NDs) were grown on a GaSb (1 0 0) substrate using metal-organic vapour phase epitaxy (MOVPE). The effects of etching depth of the substrate and thickness of the GaSb buffer layer on the density and size distribution of single and double layer dots were studied for detector applications. The etch depth of the substrate was varied up to 30 μm. In this particular study, the dots were grown at 450 °C and the GaSb spacer thickness was varied between 50 nm and 200 nm. The optimum substrate etch depth was found to be 30 μm while the best spacer thickness was found to be 200 nm. 相似文献
17.
Mrozowski nano-cracks in nuclear graphite were studied by transmission electron microscopy and selected area diffraction. The material consisted of single crystal platelets typically 1–2 nm thick and stacked with large relative rotations around the c-axis; individual platelets had both hexagonal and cubic stacking order. The lattice spacing of the (0002) planes was about 3% larger at the platelet boundaries which were the source of a high fraction of the nano-cracks. Tilting experiments demonstrated that these cracks were empty, and not, as often suggested, filled by amorphous material. In addition to conventional Mrozowski cracks, a new type of nano-crack is reported, which originates from the termination of a graphite platelet due to crystallographic requirements. Both types are crucial to understanding the evolution of macro-scale graphite properties with neutron irradiation. 相似文献
18.
Residue analysis is a method frequently used to infer the function of stone tools and it is very often applied in combination with use-wear analysis. Beyond its undeniable potential, the method itself has several intrinsic constraints. Apart from the exceptional circumstances necessary for residues to survive, the correct identification of the residue type is a very debatable topic. Before attempting to recognise ancient residues, a proper method should allow analysts to identify possible modern contaminants and exclude them from the final interpretation. Therefore, analysts should not underestimate the presence of modern contaminants and might learn how to discriminate the background noise due to handling.The main aim of this research is to provide some methodological improvements to residue analysis through the characterisation of some modern residues often present on the surface of stone tools (e.g. skin flakes, modelling clay). This characterisation was done by using both optical light microscopy (OLM) and scanning electron microscopy (SEM).Finally, a special care in the post-excavation treatment of stone tools is claimed in order to avoid major contamination of the samples. 相似文献
19.
Guang-Feng Wang Xiao-Ming Tao Wei Chen Rong-Xin Wang An Yang 《Journal of luminescence》2007,126(2):602-606
Poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) was modified by different concentrations of multi-wall carbon nanotubes (MWNTs), and the nanocomposites of PEDOT:PSS and MWNTs were firstly used as hole-injection layer in fabrication of organic light-emitting devices (OLEDs) by using a double-layer structure with hole-injection layer of doped PEDOT:PSS and emitting/electron transport layer of tris(8-hydroxyquinolinato) aluminum (Alq3). PEDOT:PSS solution doped with MWNTs was spin-coated on clean polyethylene terephthalate (PET) substrate with indium tin oxide (ITO). It was found that the electroluminescence (EL) intensity of the OLEDs were greatly improved by using PEDOT:PSS doped with MWNTs as hole-injection layer which might have resulted from the hole-injection ability improvement of the nanocomposites. Higher luminescence intensity and lower turn-on voltage were obtained by these devices and the luminance intensity obtained from the device with the hole-injection layer of PEDOT:PSS doped by 0.4 wt.% MWNTs was almost threefolds of that without doping. 相似文献
20.
In this paper, we present in situ atomic force microscopy (AFM) observations of the interaction between celestite (SrSO4) (0 0 1) surfaces and Na2CO3 aqueous solutions. The observations indicate that the interaction is characterized by a rapid alteration (carbonatation) and dissolution of the original surface, shortly followed by the formation of a new phase. EDX analyses indicate that the new phase is strontianite (SrCO3). Its crystallization involves the formation and spreading of islands of about 2.75 nm in height, which chiefly occurs on the step edges of the dissolving celestite substrate. The thickness of the islands remains almost constant during their spreading, which occurs mainly parallel to the celestite [0 1 0] direction. As a result of the progressive coalescence of the islands, a fairly homogeneous epitaxial layer forms on the celestite (0 0 1) face. At the initial stages, the formation of islands on the celestite (0 0 1) faces enhances dissolution, indicating the existence of a coupling between dissolution and crystallization reactions. Our measurements on series of AFM images provided quantitative information about coupled dissolution-growth rates on a nanoscale. The effect of the coupled reactions on the celestite (0 0 1) surface on a microscopic scale was also studied by scanning electron microscopy (SEM). 相似文献