首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The growth, morphology, and interaction/adhesion properties of supported poly(sodium 4-styrenesulfonate)/poly(allylamine hydrochloride) (PSS/PAH) and DNA/PAH multilayers were investigated by means of surface plasmon resonance spectroscopy, atomic force microscope (AFM) imaging, and AFM-related force measurements. Multilayers were assembled on a prelayer of poly(ethylenimine) (PEI) both with and without drying. SPR results showed a linear growth of the assembly in the case of PSS/PAH multilayers and nonlinear growth for DNA/PAH multilayers. Measurements of forces acting between a bare glass sphere and a multilayer-coated surface indicated repulsive or attractive forces, depending on surface charge, which suggests that, on approach, electrostatic forces dominate. On separation, we observed large pull-off forces in the case of positively charged multilayers and weak pull-off forces in the case negatively charged multilayers. Multiple adhesions and plateau regions observed on separation were interpreted in terms of a bridging of multiple polymer chains between the glass particle and the multilayer and a stretching of the polyelectrolyte loops. The dependence of the pull-off force on the number of deposited layers shows regular oscillations.  相似文献   

2.
Mechanically responsive surfaces that allow to switch reversibly from a hydrophobic to a hydrophilic substrate are reported. The surfaces are constituted of polyelectrolyte multilayers deposited on modified charged silicone sheets. n bilayers of poly(allylamine)-Nafion (PAH-Naf) and m bilayers of poly(allylamine)-poly(acrylic acid) (PAH-PAA) composed the multilayers. A (PAH-Naf)(n) film possesses a water contact angle of around 105 degrees, whereas the contact angle of a (PAH-Naf)(4)-(PAH-PAA)(m) multilayer is around 50 degrees. When such a film with m < 5 and terminated by PAA is stretched out, its water contact angle increases up to around 100 degrees. Successive elongation/retraction cycles allow the water contact angle to alternate reversibly between 100 and 57 degrees indicating the reversible mechanical responsive nature of the film.  相似文献   

3.
A new antibacterial coating made of poly(L-lysine)/hyaluronic acid (PLL/HA) multilayer films and liposome aggregates loaded with silver ions was designed. Liposomes filled with an AgNO 3 solution were first aggregated by the addition of PLL in solution. The obtained micrometer-sized aggregates were then deposited on a PLL/HA multilayer film, playing the role of a spacer with the support. Finally, HA/PLL/HA capping layers were deposited on top of the architecture to form a composite AgNO 3 coating. Release of encapsulated AgNO 3 from this composite coating was followed and triggered upon temperature increase over the transition temperature of vesicles, found to be equal to 34 degrees C. After determination of the minimal inhibitory concentration (MIC) of AgNO 3 in solution, the antibacterial activity of the AgNO 3 coating was investigated against Escherichia coli. A 4-log reduction in the number of viable E. coli cells was observed after contact for 120 min with a 120 ng/cm (2) AgNO 3 coating. In comparison, no bactericidal activity was found for PLL/HA films previously dipped in an AgNO 3 solution and for PLL/HA films with liposome aggregates containing no AgNO 3 solution. The strong bactericidal effect could be linked to the diffusion of silver ions out of the AgNO 3 coating, leading to an important bactericidal concentration close to the membrane of the bacteria. A simple method to prepare antibacterial coatings loaded with a high and controlled amount of AgNO 3 is therefore proposed. This procedure is far superior to that soaking AgNO 3 or Ag nanoparticles into a coating. In principle, other small bactericidal chemicals like antibiotics could be encapsulated by this method. This study opens a new route to modify surfaces with small solutes that are not permeating phospholipid membranes below the phase transition temperature.  相似文献   

4.
Complexity and innovation in the application of layer-by-layer adsorbed polyelectrolyte systems continues to grow. In this review, we will recap recent findings on the application of multilayers at the biological interface, and as thin films for controlling wetting properties. We also review recent experiments on determining the mechanical properties of polyelectrolyte multilayers.  相似文献   

5.
The layer by layer deposition process of polyelectrolytes is used to construct films equipped with several compartments containing "free polyelectrolytes". Each compartment corresponds to a stratum of an exponentially growing polyelectrolyte multilayer film, and two consecutive compartments are separated by a stratum composed of a linearly growing multilayer that acts as a barrier preventing polyelectrolyte diffusion from one compartment to another. We use hyaluronic acid/poly(L-lysine) as the system to build the compartments and the poly(styrene sulfonate)/poly(allylamine) system for the barrier. Using confocal microscopy, it is shown that poly(L-lysine) diffuses only within the compartment in which it was initially introduced during the film construction and is thus unable to cross the barriers. Using fluorescein isothiocyanate as a pH indicator, it is also shown that although poly(styrene sulfonate)/poly(allylamine) multilayers act as a barrier for polyelectrolytes, they do not prevent proton diffusion through the film. Such films open the route for multiple functionalization of biomaterial coatings.  相似文献   

6.
Polyelectrolyte multilayers of poly(acrylic acid) (PAA) and polyacrylamide (PAAm) were prepared via hydrogen-bonding interactions. These multilayers as assembled were stable at low pH but dissolved quickly in neutral pH water. We developed methods for stabilizing these multilayers to high pH through cross-linking by heating or UV-irradiation. Thermal treatment of the multilayers, which resulted in a partial imidization between carboxylic acid and amide groups, gave the multilayer good stability at high pH. In addition, we introduced photoreactive groups in the multilayer, which rendered the film insoluble after UV irradiation. Using these selective stabilization approaches, we have succeeded in micropatterning these films by ink-jet printing and photolithography to create subtractive patterns.  相似文献   

7.
The electronic properties of conjugated polyelectrolytes (CPEs) with poly(fluorene-co-phenylene) backbones and different counterions and charges have been investigated using absorption and ultraviolet photoelectron spectroscopy (UPS). The optical energy band gap of CPEs depends mainly on their conjugated backbone and are nearly insensitive to the charges or counterions. UPS measurements reveal that electron injection from Au to polymers with cationic groups is more efficient than for the neutral and anionic counterparts. The vacuum levels of CPEs were also shifted toward higher or lower binding energy, relative to that of Au, depending on the charge and counterion presence, and provide insight into the general alignment of dipoles at the metal/organic interface.  相似文献   

8.
The potential for using polyelectrolyte multilayers (PEMs) to provide chromatographic functionality on continuous silica networks created from sol-gel chemistry has been evaluated by capillary electrochromatography (CEC). Construction of the PEM was achieved by flushing the column with polyelectrolytes of alternative charge, with variation of the properties of the exposed polyelectrolyte providing a unique means to vary the chromatographic surface. Variation of the exposed polyelectrolyte from poly(diallyldimethylammonium chloride) (PDDAC) to dextran sulfate (DS) allowed the direction of the electroosmotic flow (EOF) to be changed and also provided a means to vary the chromatographic capacity. Variation of negative polymer from DS to poly(styrene sulfonate) (PSS) significantly altered the EOF and the migration of peptides, with both the reversed-phase and ion-exchange capacities increasing. An alternative method for changing the column capacity was to change the thickness of the PEM, which was evaluated by anion-exchange CEC. A 70-80% increase in retention was observed for all anions without any increase in EOF suggesting significant penetration of the analytes through the PEM and interaction with buried charges within the PEM.  相似文献   

9.
10.
Polyelectrolyte multilayers are built up from ionically modified polyphosphazenes by layer-by-layer assembly of a cationic (poly[bis(3-amino-N,N,N-trimethyl-1-propanaminium iodide)phosphazene] (PAZ+) and an anionic poly[bis(lithium carboxylatophenoxy)phosphazene] (PAZ-). In comparison, multilayers of poly(sodium 4-styrenesulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) are investigated. Frequency-dependent conductivity spectra are taken in sandwich geometry at controlled relative humidity. Conductivity spectra of ion-conducting materials generally display a dc plateau at low frequencies and a dispersive regime at higher frequencies. In the present case, the dispersive regime shows a frequency dependence, which is deviating from the typical behavior found in most ion-conducting materials. Dc conductivity values, which can be attributed to long-range ionic transport, are on the order of sigmadc = 10-10-10-7 S.cm-1 and strongly depend on relative humidity. For PAZ+/PAZ- multilayers sigmadc is consistently larger by one decade as compared to PSS/PAH layers, while the humidity dependence is similar, pointing at general mechanisms. A general law of a linear dependence of log(sigmadc) on relative humidity is found over a wide range of humidity and holds for both multilayer systems. This very strong dependence was attributed to variations of the ion mobility with water content, since the water content itself is not drastically dependent on humidity.  相似文献   

11.
12.
Morphological changes of poly(acrylic acid)/poly(diallyldimethylammonium chloride) multilayers induced by low pH were investigated by scanning force microscopy. The weakened interaction between the charged polymer chains in the protonation process is believed to be the reason for this variation. Kinetic studies have shown that during protonation phase separation and dissociation of the multilayers took place successively. The compression of the multilayers, however, caused a transition of the multilayers from a rubbery state to a glassy state. As a result, the closely compacted multilayers lost their sensitivity to pH change. An increase of electrostatic and hydrophobic interactions, can decrease the free energy of the multilayers, and stabilize the films. By compression of the multilayers with a rubber stamp having geometric patterns, films with spatially localized pores were produced.  相似文献   

13.
The formation of polyelectrolyte multilayers (PEMs) is investigated using a silicon-on-insulator based thin film resistor which is sensitive to variations of the surface potential. The buildup of the PEMs at the silicon oxide surface of the device can be observed in real time as defined potential shifts. The influence of polymer charge density is studied using the strong polyanion poly(styrene sulfonate), PSS, combined with the statistical copolymer poly(diallyl-dimethyl-ammoniumchloride-stat-N-methyl-N-vinylacetamide), P(DADMAC-stat-NMVA), at various degrees of charge (DC). The multilayer formation stops after a few deposition steps for a DC below 75%. We show that the threshold of surface charge compensation corresponds to the threshold of multilayer formation. However, no reversion of the preceding surface charge was observed. Screening of polyelectrolyte charges by mobile ions within the polymer film leads to a decrease of the potential shifts with the number of layers deposited. This decrease is much slower for PEMs consisting of P(DADMAC-stat-NMVA) and PSS as compared to PEMs consisting of poly(allylamine-hydrochloride), PAH, and PSS. From this, significant differences in the dielectric constants of the polyelectrolyte films and in the concentration of mobile ions within the films can be derived.  相似文献   

14.
Attenuated total internal reflectance Fourier transform infrared, ATR-FTIR, spectroscopy was used to compare the water uptake and doping within polyelectrolyte multilayers made from poly(styrene sulfonate), PSS, and a polycation, either poly(allylamine hydrochloride), PAH, or poly(diallyldimethylammonium chloride), PDADMAC. Unlike PDADMA/PSS multilayers, whose water content depended on the solution ionic strength, PAH/PSS multilayers were resistant to doping by NaCl to a concentration of 1.2 M. Using (infrared active) perchlorate salt, the fraction of residual counterions in PDADMA/PSS and PAH/PSS was determined to be 3% and 6%, respectively. The free energy of association between the polymer segments, in the presence of NaClO4, was about 5 kJ mol-1 and -10 kJ mol-1, respectively, for PDADMA/PSS and PAH/PSS, indicating the relatively strong association between the polymer segments in the latter relative to the former. Varying the pH of the solution in contact with the PAH/PSS multilayer revealed a transition to a highly swollen state, interpreted to signal protonation of PAH under much more basic conditions than the pKa of the solution polymer. The increase in the multilayer pKa suggested an interaction energy for PAH/PSS in NaCl of ca. 16 kJ mol-1.  相似文献   

15.
Adsorption of colloidal particles presents an interesting alternative to the modification of surfaces using covalent coupling or physisorption of molecules. However, to tailor the properties of these materials full control over the effective particle-substrate interactions is required. We present a systematic investigation of the adsorption of spherical polyelectrolyte brushes (SPB) onto polyelectrolyte multilayers (PEM). A brush layer grafted from colloidal particles allows the incorporation of various functional moieties as well as the precise adjustment of their adsorption behaviour. In the presence of oppositely charged surfaces the amount of adsorbed SPB monotonically increases with the ionic strength, whereas equally charged substrates efficiently prevent colloidal attachment below a threshold salt concentration. We found that the transition from the osmotic to the salted brush regime at approximately 100 mM coincided with a complete loss of substrate selectivity. In this regime of high ionic strength, attractive secondary interactions become dominant over electrosteric repulsion. Due to the soft polyelectrolyte corona a surface coverage exceeding the theoretical jamming limit could be realized. Both the adsorption kinetics and the resulting thin film morphologies are discussed. Our study opens avenues for the production of two-dimensional arrays and three-dimensional multilayered structures of SPB particles.  相似文献   

16.
This review addresses the fabrication and properties of novel polyelectrolyte microcapsules, with an emphasis on their mechanical and permeability properties. Ease of preparation through layer-by-layer self assembly, accurate control over wall thickness as well as flexibility in the choice of constituents make these capsules very promising for numerous applications in materials and life science. Moreover, by engineering the inner and outer interfaces, these capsules can be used as microreactors for precipitation, crystallization, and polymerization reactions, as well as enzymatic, and heterogeneous catalysis.  相似文献   

17.
In situ nanoindentation was performed on a multilayer of poly(acrylic acid) and a high molecular weight, pendant chain polyviologen under controlled electrochemical potential. The modulus of the thin film of polyelectrolyte complex was reversibly modulated, by about an order of magnitude, upon changing the state of charge within the material using the electrochemically active and addressable viologen repeat units. The applied potential, under aqueous conditions, is believed to control the extent of cross-link formation. Simultaneous quartz crystal microbalance measurements revealed the flux of ions into or out of the multilayer during redox cycling. Apparent film modulus also depends on the identity of the last layer.  相似文献   

18.
In this work, the lateral mobility of polyelectrolyte multilayers was investigated by means of the fluorescence recovery after photobleaching (FRAP) technique, with special attention to the effect of relevant parameters during and after preparation. Different polyelectrolytes with respect to charge density, stiffness, and hydrophilicity were compared. From the experimental results emerged that the density of charged sites along the polymer is the most important parameter controlling the formation of polymer complexes. At higher charge density, more complexes are formed, and the diffusion coefficient decreases. It was observed that the intrinsic backbone stiffness reduces the interpenetration of polyelectrolyte layers and the formation of complexes promoting the lateral mobility. In addition, the lateral mobility increases with increasing ionic strength and with decreasing hydration shell of the added anion in the polyelectrolyte solution. The effect of heating or annealing in electrolyte solution after preparation was also investigated along with the embedding of the probing layer at controlled distances to the multilayer surface.  相似文献   

19.
The azobenzene-containing polyanion PAC-azoBNS was alternately assembled with the polycation diazoresin (DAR) to construct photo-cross-linkable multilayer films of PAC-azoBNS/DAR that contain photolabile groups of azobenzene. Upon mild UV irradiation, the interaction between PAC-azoBNS/DAR multilayers was converted from electrostatic interaction to covalent bonds. Because of the free carboxylic acid groups presented in the film, the photo-cross-linked multilayer film favors the selective permeation of positively charged species. After photolysis of the photo-cross-linked PAC-azoBNS/DAR films with intense UV irradiation, azobenzene groups decompose to produce imine groups, and a photo-cross-linked robust film containing free carboxylic acid and imine groups was fabricated. The resultant film allows the permeation of negatively charged species and meanwhile shows a pH-switchable permselectivity for positively charged species. Because of the covalently cross-linking structure, the photolyzed cross-linked PAC-azoBNS/DAR film shows high reversible switching behavior and has high stability in solution with high ionic strength.  相似文献   

20.
We report a study of the electrostatic layer-by-layer self-assembly of electroactive polyelectrolyte multilayers incorporating the redox protein cytochrome c (cyt c) combined with recrystallization of the bacterial cell wall surface layer from Bacillus sphaericus CCM 2177 SbpA (S-layer). The polyelectrolyte multilayer assembly was prepared on flat gold electrodes with a nanometer-scale roughness that allowed monitoring of the film formation throughout all the assembly stages by atomic force microscopy measurements in liquid with respect to topography and forces. The deposition of alternating layers of sulfonated polyaniline and cyt c was carried out by adsorption from the corresponding solutions on a cyt c monolayer electrode. The electroactivity of cyt c within the assembly was confirmed by cyclic voltammetry. We showed that the surface properties of the electrode terminating layer change after each adsorption step accordingly. We also found that S-layer recrystallization on the top of the multilayer film was feasible while electroactivity of cyt c within a polyelectrolyte matrix was partially maintained. This approach offers a new strategy to design a biocompatible and permselective outer envelope of a polyelectrolyte multilayer, promising sensor applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号