首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Hydrophobic association hydrogels (HA-gels) were prepared through micellar copolymerization of acrylamide (AM) and a small amount of octylphenol polyoxyethylene acrylate (OP-10-AC) in an aqueous solution containing sodium dodecyl sulfate (SDS). For the P(AM/OP-10-AC) HA-gels, the effect of crosslinking method, synthesis temperature, mineral salt (NaCl) and swelling on their tensile mechanical properties was investigated in detail. The experimental results show that crosslinking method, synthesis temperature, NaCl and swelling powerfully influenced tensile mechanical properties of the P(AM/OP-10-AC) HA-gels. In addition, according to the tensile experimental results of the P(AM/OP-10-AC) HA-gels swollen, an effective crosslinking density change model is proposed. The effect of swelling on tensile mechanical properties of the P(AM/OP-10-AC) HA-gels was discussed on the basis of the model.  相似文献   

2.
高强度疏水缔合水凝胶(HA-gels)是丙烯酰胺(AM)和少量的疏水单体辛基酚聚氧乙烯(4)醚丙烯酸酯(OP-4-AC)在十二烷基硫酸钠(SDS)水溶液中采用胶束共聚的方法制备的.采用胶束共聚理论、橡胶弹性统计理论及Mooney-Rivlin理论,并结合单向拉伸实验数据,对HA-gels的交联网络结构的形成机理进行了探...  相似文献   

3.
A series of physically cross-linked hydrogels composed poly(acrylic acid) and octylphenol polyoxyethylene acrylate with high mechanical strength are reported here with dual cross-linked networks that formed by silica nanoparticles (SNs) and hydrophobic association micro-domains (HAMDs). Acrylic acid (AA) and octylphenol polyoxyethylene acrylate with 10 ethoxyl units (OP-10-AC) as basic monomers in situ graft from the SNs surface to build poly(acrylic acid) hydrophilic backbone chains with randomly distributed OP-10-AC hydrophobic side chains. The entanglements among grafted backbone polymer chains and hydrophobic branch architecture lead to the SNs and HAMDs play the role of physical cross-links for the hydrogels network structure. The rheological behavior and polymer concentration for gelation process are measured to examine the critical gelation conditions. The correlation of the polymer dual cross-linked networks with hydrogels swelling behavior, gel-to-sol phase transition, and mechanical strength are addressed, and the results imply that the unique dual cross-linking networks contribute the hydrogels distinctive swelling behavior and excellent tensile strength. The effects of SNs content, molecular weight of polymer backbone, and temperature on hydrogels properties are studied, and the results indicate that the physical hydrogel network integrity is depended on the SNs and HAMDs concentration.  相似文献   

4.
A micelle-forming polymerizable surfactant monomer, octylphenol polyoxyethylene acrylate (OP-10-AC), was synthesized, and then OP-10-AC was copolymerized with acrylamide (AM) to form nonionic hydrophobically modified polyacrylamide P(AM/OP-10-AC) through micellar copolymerization. In the absence of surfactants, it was investigated in detail that the effect of mineral salts and temperature on steady rheological properties of P(AM/OP-10-AC) solutions and the effect of concentrations on reduced viscosity of P(AM/OP-10-AC) in a dilute solution. The results indicate that concentrations of the copolymer, mineral salts and temperature had a strong influence on shear viscosity of P(AM/OP-10-AC) solutions, and the trend of reduced viscosity of P(AM/OP-10-AC) solutions was distinctly different from polyacrylamide with increasing concentrations of testing solutions. In addition, it was also investigated that stress-relaxation behavior of an aqueous solution of P(AM/OP-10-AC)/KCl. As a result, a stress-relaxation model of the copolymer solutions was proposed, which can further verify the correctness of the conclusion on stress-relaxation behavior of hydrophobic association hydrogels in the paper reported previously.  相似文献   

5.
A novel stimuli-responsive organic/inorganic nanocomposite hydrogel (NC hydrogel) with excellent mechanical properties was synthesized by in situ polymerization of 2-(2-methoxyethoxy) ethyl methacrylate (MEO(2)MA), oligo (ethylene glycol) methacrylate (OEGMA) and acrylic acid (AAc), as the polymeric matrix (PMOA), and fibrillar attpulgite (AT), as the reinforcer and cross-linker. The effect of the AT content on the mechanical properties for the swollen and dried NC hydrogels was determined by tensile testing and dynamic mechanical analysis (DMA), respectively. The tensile testing results showed that the incorporation of AT nanoparticles significantly enhanced the mechanical properties of NC hydrogels. As the content of AT increased, the tensile strength, tensile modulus and effective cross-linked chain density increased. The DMA results showed that the storage modulus of AT/PMOA NC hydrogels was increased and the glass transition temperatures shifted to higher temperature compared to the pure PMOA hydrogel, which further indicated that the enhancement of mechanical property depended upon the presence and content of AT. In addition, the faster swelling rates of the NC hydrogels were observed in comparison with the corresponding physically cross-linked PMOA hydrogel, except for 1% AT/PMOA sample. However, the deswelling kinetics of NC hydrogels was obviously retarded.  相似文献   

6.
A new type of stimuli-responsive organic/inorganic nano-composite hydrogel was prepared by introducing fibrillar attapulgite into poly(2-hydroxyethyl methacrylate-co-poly(ethylene glycol) methyl ether methacrylate-co-methacrylic acid) network, in which the nanosized attapulgite fibril worked as the cross-linker instead of conventional chemical cross-linker. In the preparation process, a prepolymerization route was adopted to effectively stabilize the dispersion of attapulgite. The structure and morphology of the nano-composite hydrogels were characterized by SEM, FTIR and DSC. The swelling/deswelling behaviors and tensile mechanical properties of the nano-composite hydrogels were compared with that of the corresponding chemically cross-linked hydrogel. The results showed that the nano-composite hydrogels had much greater equilibrium-swelling ratio, much faster response rate to pH and significantly improved tensile mechanical properties. As the content of AT increased, the tensile strength, effective cross-link chain density and glass transition temperature increased, while the equilibrium swelling ratio, deswelling rate and elongation at break decreased.  相似文献   

7.
以丙烯酸(AA)、甲基丙烯酸十八酯(OMA)、十二烷基硫酸钠(SDS)为原料,采用胶束共聚的方法合成了疏水缔合(HA)凝胶.在HA凝胶内部,表面活性剂SDS与疏水单体OMA组成的增溶胶束起到物理交联作用,将亲水的聚合物链交联起来.通过单向拉伸试验证实了该凝胶具有较高的机械性能.此外,也测试了HA凝胶在不同pH值溶液中的溶胀行为.结果显示,HA凝胶具有特殊的溶胀行为,其溶胀过程可以分为凝胶溶蚀、溶胀平衡和凝胶瓦解3个阶段.在强酸性条件下,凝胶的溶胀被抑制,没有出现凝胶瓦解阶段.在强碱性条件下,凝胶的溶胀被促进,溶胀平衡阶段被越过.盐的存在也会抑制HA凝胶的溶胀,但在SDS溶液中,溶液中的SDS会促使凝胶中的疏水改性聚合物溶解到溶液中去,组成新的缔合结构,而使溶液增稠。  相似文献   

8.
Poly(acrylamide-co-octylphenol polyoxyethylene (10) acrylate) hydrophobic association hydrogels, which is abbreviated to poly(AM-co-OP10/AC) HA-gels, were prepared through micellar copolymerization of acrylamide (AM) and a small amount of octylphenol polyoxyethylene (10) acrylate (OP10/AC) in the presence or absence of sodium dodecyl sulfate (SDS). For poly(AM-co-OP10/AC) HA-gels, formation mechanism was discussed in detail, which can reasonably explain the reason that tensile mechanical properties of the hydrogels (containing SDS) are much higher than those of the hydrogels (not containing SDS). In addition, according to the tensile experimental results of poly(AM-co-OP10/AC) HA-gels, the effect of composition content in the initial solutions on tensile mechanical properties was investigated in detail. The results clearly indicate tensile strength, elastic modulus and elongations for poly(AM-co-OP10/AC) HA-gels strongly depended on composition content in the initial solutions.  相似文献   

9.
Molecular interactions between sodium dodecyl sulfate (SDS) and N,N-dimethyldodecylamine oxide (C12DMAO), whose mixtures were effective for dispersion of stratum corneum (SC) into intact corneocytes, were studied and found to be strongest at an SDS/C12DMAO molar ratio of 1/3, when dispersion of SC was most effective and the sizes of the mixed micelles were largest.

This dispersion effect was confirmed as being caused by the stronger solubilizing power of molecular complexes formed between SDS and C12DMAO in the binary mixed solutions by using 1H NMR. The mechanisms for removing intercellular lipids such as ceramides, cholesterol and their derivatives, which play an important role as adhesives among the corneocytes, and for dispersing SC into intact cells were proposed on the basis of supporting data obtained from 1H-NMR and light scattering measurements.  相似文献   


10.
一种新型室温固化、耐高温环氧树脂体系及其性能   总被引:1,自引:1,他引:1  
采用1-己基-3-甲基咪唑四氯化铁盐([C6mim]FeCl4)与混合胺复配室温(20 ℃)固化双酚A型环氧树脂E-51,并与其它脂肪胺类室温固化E-51体系在力学性能、热性能、耐老化性能方面的数据进行了比较,同时分析了[C6mim]FeCl4不同添加量对固化体系性能的影响,结果显示:[C6mim]FeCl4/混合胺复配室温固化E-51体系的室温拉伸强度可达90 MPa,高温(120 ℃)下也保持了良好的力学性能,热失重(5%)分解温度为310 ℃,200 ℃老化7 d后,拉伸强度为28 MPa,是一种可在高温下使用的新型环氧树脂室温固化体系。  相似文献   

11.
 Amphiphilic urethane acrylate hydrogels containing ionic group (dimethylopropionic acid, DMPA) were prepared by varying the molecular weight of the soft segment (polyether type, PTMG) and type of diisocyanate, and their swelling behaviors and mechanical properties were examined. They showed amphiphilic property due to the hydrophilic ionic groups and hydrophobic polyethers comprising the urethane acrylate network. Heterophasic gel structure could be found for the hydrogels prepared in water, but not for the hydrogels in organic solvent (1,4-dioxane), through scanning electron microscopy. Because of this heterophasic gel structure, they were able to take in a large amount of water as well. The hydrophobic interaction generated by the polyether soft segments between urethane acrylate network chains decreased the degree of swelling, however, increased reversibly the tensile strengths at equilibrium swelling state. MDI-based hydrogel showed low swelling ratio and high tensile strength because of its ordered hard domain structure. These amphiphilic urethane acrylate hydrogels showed salt- and pH-dependent swelling behaviors. Received: 26 September 1997 Accepted: 24 December 1997  相似文献   

12.
Akama Y  Tong A  Ito M  Tanaka S 《Talanta》1999,48(5):113-1137
An aqueous two-phase system of dodecyl triethylammonium bromide (C12NE, cationic surfactant) and sodium dodecyl sulfate (SDS, anionic surfactant) mixture is proposed for the extraction of some dyes and porphyrin compounds. Transparent two phase-systems are formed when the surfactant concentrations and C12NE/SDS ratios are in certain regions. In this study, the aqueous two phase-systems were prepared by mixing 0.1 mol l−1 C12NE and SDS with a molar ratio of 1.7:1.0. The results showed that negatively charged chlorophyll (sodium copper chlorophyllin) and positively charged dye (methyl violet) were efficiently extracted into the upper phase. The negatively charged methyl orange (pH>7) was moved into the upper phase mostly while amphoteric methyl orange (pH<3) was distributed in the two phases uniformly. Except for hydrophobic force, charge interaction between solute and surfactant also play an important role in the extraction process.  相似文献   

13.
以丙烯酰胺(AM)为亲水单体,脂肪醇聚氧乙烯醚丙烯酸酯(AEO-AC-n-m,n为疏水端烷基链碳的数目,m为亲水端PEG链的长度,n,m=13,5;10,5;13,10)为疏水单体,十二烷基硫酸钠(SDS)为表面活性剂,过硫酸钾(KPS)为引发剂,通过胶束聚合制备了3种聚丙烯酰胺-co-脂肪醇聚氧乙烯醚丙烯酸酯(AM-co-AEO-AC)疏水缔合水凝胶.以疏水烷基链为直链的疏水单体AEO-AC-13-5合成的直链型水凝胶的网络结构均匀且强度高,其形态在水中可维持180 d.而以疏水烷基链为支链的疏水单体AEO-AC-10-5与AEO-AC-13-10合成的支链型水凝胶的机械性能较弱,60 d内即溶解于水中.在相同条件下,直链型水凝胶断裂时的最大应力是支链型水凝胶的4~5倍.利用弹性橡胶理论中的新胡克方程计算了直链型和支链型水凝胶的有效交联密度ν0和有效交联点间的分子量Mc.  相似文献   

14.
以聚乙烯醇(PVA)和壳聚糖(CS)为原料, 采用循环冻融法制备了前驱体水凝胶(PVA-CS), 并经过浸泡氯化钠溶液和透析后处理构筑了强韧抗溶胀复合水凝胶(PVA-CS-6.16-30). 采用扫描电子显微镜(SEM)、 傅里叶变换红外光谱仪(FTIR)、 X射线衍射分析仪(XRD)、 差示扫描量热分析仪(DSC)及流变仪表征了两种水凝胶的微观结构, 采用拉力机测试了其机械性能. 结果表明: 由于结晶微区、 氢键及链缠结等协同交联作用, PVA-CS-6.16-30具备高效能量耗散机制. 与前驱体PVA-CS相比, PVA-CS-6.16-30的交联密度由7.69×10?4 mol/cm3增加至9.97×10?4 mol/cm3, 自由水含量由62.8%降低至52.6%, 网络尺寸由6.11 nm降低至5.21 nm, 凝胶分数由58.6%增加至86.8%, PVA结晶度由14.8%增加至17.2%, 其抗拉强度、 断裂伸长率、 韧性及抗压强度分别为2.9 MPa, 229%, 3.3 MJ/m3和7.6 MPa. 此外, 该复合水凝胶还具有优异的耐溶胀与抗蠕变性能. 在37 ℃的PBS缓冲溶液中浸泡7 d后, 其抗拉和抗压强度分别高达2.8和7.5 MPa, 优于常见水凝胶. 商品化的原料、 简单的构筑方法及优异的综合性能有望推动水凝胶在组织工程和生物医疗领域的应用.  相似文献   

15.
A new method to prepare poly (vinyl alcohol) hydrogels by nebulization method.is introduced. A blend of Poly (vinyl alcohol) (PVA), sodium gum malate (SGM) and cellulose nanofibers (CNFs) originated from Catha Edulis was prepared and tested as neural tissue substitutes. Glutaraldehyde (GLA) was used as a crosslinker. Presence of SGM and CNFs in the formulation improved the nebulization process of PVA solution as well as mechanical properties of the fabricated hydrogels. The tensile strength of neat PVA films attains 46.7 MPa, while the tensile strength was 94.23 MPa for crosslinked-PVA. The tensile strength was found to increase with the increase in the CNFs content in the PVA compared with PVA/SGM. These soft tissues were characterized by using FTIR, SEM, and DSC. Scanning electron microscopy (SEM) results showed that PVA/SGM/CNFs blends has a diameter about 50 ± 8µm. The hydrogels were tested also for antimicrobial activities against pathogenic bacteria like Candida albicans (fungus), Bacillus subtilis (G + Ve), Staphylococcus aureus (G + Ve), Proteus vulgaris (G ? Ve) and Erwinia carotovora (G ? Ve). Favorable mechanical, thermal properties and biodegradation nature of the hydrogels, as well as antimicrobial property indicate that prepared hydrogels are suitable for tissue engineering applications.  相似文献   

16.
谢续明 《高分子科学》2017,35(10):1253-1267
Multi-bond network(MBN) which contains a single network with hierarchical cross-links is a suggested way to fabricate robust hydrogels. In order to reveal the roles of different cross-links with hierarchical bond energy in the MBN, here we fabricate poly(acrylic acid) physical hydrogels with dual bond network composed of ionic cross-links between carboxylFe3+ interactions and hydrogen bonds, and compare these dually cross-linked hydrogels with singly and ternarily cross-linked hydrogels. Simple models are employed to predict the tensile property, and the results confirm that the multi-bond network with hierarchical distribution in the bond energy of cross-links endows hydrogel with effective energy-dissipating mechanism. Moreover, the dually cross-linked MBN gels exhibit excellent mechanical properties(tensile strength up to 500 k Pa, elongation at break ~ 2400%) and complete self-healing after being kept at 50 °C for 48 h. The factors on promoting self-healing are deeply explored and the dynamic multi-bonds are regarded to trigger the self-healing along with the mutual diffusion of long polymer chains and ferric ions.  相似文献   

17.
Hydrogels have potential applications in many fields, but the poor mechanical strength has limited their further development. In this article, we designed a high-strength hydrogel with an interpenetrating network (IPN) structure from polyacrylamide (PAM) and poly(vinyl alcohol) (PVA). Synthesis parameters, such as PVA/AM mass ratio, crosslinker dosage and elongation time were carried out for high tensile strength and elongation. The results showed that chemical crosslinking, physical entanglement and PVA precipitates were the dominant parameters for the improvement of mechanical properties. The PVA structure transferred from crystal to amorphous due to intermolecular and intramolecular interactions (such as hydrogen bond and self-crosslinking). PVA precipitates scatterred in the brittle PAM matrix homogeneously which dispersed the applied stress and improved the hydrogel toughness. The tensile strength and elongation were extremely high, they were 2.4 MPa and 3100%, respectively. The simple method is versatile in synthesizing high-strength IPN hydrogels using many kinds of polymer species.  相似文献   

18.
An effective strategy was developed to fabricate the supramolecular hydrogels with high mechanical strength and adjustable thermosensitivity in aqueous systems, in which physical hydrogel precursors were first formed by the inclusion complexation of Pluronic F68/poly(epsilon-caprolactone) block copolymer end-capped with acryloyl groups with alpha-cyclodextrin (alpha-CD) and subsequently in situ UV photo-cross-linking was carried out. In this way, strong supramolecular hydrogels with elastic moduli greater than 100 000 Pa could be created, which is an order of magnitude higher than that previously achieved with related supramolecular hydrogels. Moreover, the stimuli-responsive property of these hydrogels could be tailored by changing the molar feed ratio of alpha-CD to the macromer. By X-ray diffraction and thermogravimetric analyses, the polypseudorotaxane structure of the inclusion complexes in as-obtained hydrogels was confirmed.  相似文献   

19.
A roadblock for supramolecular hydrogels is their poor mechanical properties. Herein, to enhance the mechanical strength of supramolecular hydrogels, agarose(AG) was incorporated into the low molecular weight hydrogelator(G1). The results of scanning electron microscopy(SEM), circular dichroism(CD) and Fourier transform infrared spectroscopy(FTIR) prove that G1 gelators can self-assemble into cross-linked network together with AG. The mechanical properties of the gels are characterized by a rotary rheometer and the mechanical properties of the hybrid hydrogels(Hgel) can be significantly improved and may be further tuned by changing the ratio of the two components. For example, the elastic modulus of Hgel Ⅱ[m(G1):m(AG)=7:3] is about 2 times higher than that of G1 hydrogel. The results demonstrate that the mechanical property of hybrid supramolecular hydrogels can be adjusted through the formation of a cross-linked network.  相似文献   

20.
《中国化学快报》2023,34(4):107470
Hydrogel-based quasi-solid-state electrolytes (Q-SSEs) swollen with electrolyte solutions are important components in stretchable supercapacitors and other wearable devices. This work fabricates a super-tough, fatigue-resistant, and alkali-resistant multi-bond network (MBN) hydrogel aiming to be an alkaline Q-SSE. To synthesize the hydrogel, a 2-ureido-4[1H]-pyrimidone (UPy) motif is introduced into a poly(acrylic acid) polymer chain. The obtained MBN hydrogels with 75 wt% water content exhibit tensile strength as high as 2.47 MPa, which is enabled by the large energy dissipation ability originated from the dissociation of UPy dimers due to their high bond association energy. Owing to the high dimerization constant of UPy motifs, the dissociated UPy motifs are able to partially re-associate soon after being released from external forces, resulting in excellent fatigue-resistance. More importantly, the MBN hydrogels exhibit excellent alkali-resistance ability. The UPyGel-10 swollen with 1 mol/L KOH display a tensile strength as high as ~1.0 MPa with elongation at break of ~550%. At the same time, they show ionic conductivity of ~17 mS/cm, which do not decline even when the hydrogels are stretched to 500% strain. The excellent mechanical property and ionic conductivity of the present hydrogels demonstrate potential application as a stretchable alkaline Q-SSE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号