首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DFT calculations and X-ray crystallography were used to directly compare the reactivity of the convex carbon surfaces of C(20)H(10)-corannulene and the C(60)-fullerene toward the diruthenium(i,i) metal cluster.  相似文献   

2.
Reactions of ketenes (R1R2CCO) with (η5-C5H5)Ni(PPh3)CCR (I) and (η5-C5H5)Fe(CO)(L)CCR (III, L = CO and PPh3) give σ-cyclobut-1-en-3-onyl complexes, {(η5-C5H5)Ni(PPh3)CC(R)COC}R1R2 (VI) and (η5-C5H5)Fe(CO)(L)CC(R)COCR1R2 (IX)}, (2 + 2) cycloaddition products, in good yields. The σ-cyclobutenonyl complexes also can be prepared by the reaction of I and III with acyl chlorides in the presence of triethylamine.  相似文献   

3.
Summary Since the electron-capture detector (ECD) is highly selective, it is imperative to use a more universal ionization detector in conjunction with the ECD in order to detect non-capturing or weakly capturing compounds. Also in an EC study of weakly or moderately strong electron-capturing compounds, it is necessary to identify the EC peak of the compound by identifying the major component with an ionization detector. In this paper we have shown that the pulsed discharge detector can be interchanged between the EC and the helium ionization modes within 4–6 s. The application of this procedure has been illustrated with a mixture of alkane/alkene chlorocompounds. The interchange between EC and argon photoionization modes has also been investigated. The change from EC to argon photoionization also occurs in 4–6 s but the reverse process requires 9 s.  相似文献   

4.
Electrospray ionisation mass spectrometry (ESI-MS) and circular dichroism (CD) spectroscopy were used to compare the binding of mononuclear nickel, ruthenium and platinum complexes to double stranded DNA (dsDNA) and quadruplex DNA (qDNA). CD studies provided evidence for the binding of intact complexes of all three metal ions to qDNA. ESI mass spectra of solutions containing platinum or ruthenium complexes and qDNA showed evidence for the formation of non-covalent complexes consisting of intact metal molecules bound to DNA. However, the corresponding spectra of solutions containing nickel complexes principally contained ions consisting of fragments of the initial nickel molecule bound to qDNA. In contrast ESI mass spectra of solutions containing nickel, ruthenium or platinum complexes and dsDNA only showed the presence of ions attributable to intact metal molecules bound to DNA. The fragmentation observed in mass spectral studies of solutions containing nickel complexes and qDNA is attributable to the lower thermodynamic stability of the former metal complexes relative to those containing platinum or ruthenium, as well as the slightly harsher instrumental conditions required to obtain spectra of qDNA. This conclusion is supported by the results of tandem mass spectral studies, which showed that ions consisting of intact nickel complexes bound to qDNA readily undergo fragmentation by loss of one of the ligands initially bound to the metal. The ESI-MS results also demonstrate that the binding affinity of each of the platinum and ruthenium complexes towards qDNA is significantly less than that towards dsDNA.  相似文献   

5.
The reaction of the chloro-complex [CpRuCl(PEt(3))(2)] with acetylene gas in methanol gave the pi-alkyne complex [CpRu(eta(2)-HCtbd1;CH)(PEt(3))(2)][BPh(4)] (1), which has been structurally characterized by X-ray analysis. The alkyne complex undergoes spontaneous isomerization even at low temperature, yielding the metastable alkynyl-hydride complex [CpRu(H)(Ctbd1;CH)(PEt(3))(2)][BPh(4)] (2), as the result of the oxidative addition of the alkyne C-H bond. This compound has also been structurally characterized despite it tautomerizes spontaneously into the stable primary vinylidene [CpRu(=C=CH(2))(PEt(3))(2)][BPh(4)] (3). This species has been alternatively prepared by a two-step deprotonation/protonation synthesis from the pi-alkyne complex. Moreover, the reaction of the initial chloro-complex with monosubstituted alkynes HCtbd1;CR (R = SiMe(3), Ph, COOMe, (t)Bu) has been studied without detection of pi-alkyne intermediates. Instead of this, alkynyl-hydride complexes were obtained in good yields. They also rearrange to the corresponding substituted vinylidenes. In the case of R = SiMe(3), the isomerization takes place followed by desilylation, yielding the primary vinylidene complex. X-ray crystal structures of the vinylidene complexes [CpRu(=C=CH(2))(PEt(3))(2)][BPh(4)] (3) and [CpRu(=C=CHCOOMe)(PEt(3))(2)][BPh(4)] (10) have also been determined. Both, full ab initio and quantum mechanics/molecular mechanics (QM/MM) calculations were carried out, respectively, on the model system [CpRu(C(2)H(2))(PH(3))(2)](+) (A) and the real complex [CpRu(C(2)H(2))(PEt(3))(2)](+) (B) to analyze the steric and electronic influence of ligands on the structures and relative energies of the three C(2)H(2) isomers. QM/MM calculations have been employed to evaluate the role of the steric effects of real ligands, whereas full ab initio energy calculations on the optimized QM/MM model have allowed recovering the electronic effects of ligands. Additional pure quantum mechanics calculations on [CpRu(C(2)H(2))(PH(3))(2)](+) (C) and [CpRu(C(2)H(2))(PMe(3))(2)](+) (D) model systems have been performed to analyze in more detail the effects of different ligands. Calculations have shown that the steric effects induced by the presence of bulky substituents in phosphine ligand are responsible for experimentally observed alkyne distortion and for relative destabilization of the alkyne isomer. Moreover, increasing the phosphine basicity and sigma donor capabilities of ligands causes a relative stabilization of an alkynyl-hydride isomer. The combination of both steric and electronic effects, makes alkyne and alkynyl-hydride isomers to be close in energy, leading to the isolation of both complexes.  相似文献   

6.
Macrocyclic complexes of Cu(II), Ni(II), Co(II), and Zn(II)of a tetradentate Schiff base ligand derived from 3-benzalideneacetoacetanilide and N-(2-aminoethyl)-1,3-ropanediamine were synthesized. The nature of the complexes and the geometry have been inferred from their microanalytical data, magnetic susceptibility measurements, IR, UV-Vis, 1H NMR, ESR, and mass spectral techniques. The low electrical conductance of the complexes supports the neutral nature. Monomeric nature of the complexes is assessed from their magnetic susceptibility values.The in vitro biological screening effects of the investigated compounds were tested against the bacteria E. coli, S. aureus, S. typhi, and K. pneumoniae by the well diffusion method using agar nutrient as the medium. A comparative study of minimum inhibitory concentration (MIC) values of the Schiff base and its complexes indicate that the metal complexes exhibit higher antibacterial activity than the free ligand and the control (streptomycin). The cyclic voltammetry method was used to probe the interaction of a Cu(II) complex with pUC18 DNA. Information of the binding ratio and intercalation mode can be obtained from its electrochemical data. Cyclic voltammetric measurements showed that the Cu(II) complex undergoes a reversible reduction at biologically accessible potentials. From the study, it is understood that the copper complex prefers to bind with DNA in Cu(II) rather than Cu(I) oxidation state. The DNA cleavage ability of the complexes was monitored by gel electrophoresis using supercoiled pUC18 DNA in tris-HCl buffer. The text was submitted by the authors in English  相似文献   

7.
Qualitative inspection of molecular orbitals (MOs) remains one of the most popular analysis tools used to describe the electronic structure and bonding properties of transition metal complexes. In symmetric coordination complexes, the use of group theory and the symmetry-adapted linear combination (SALC) of fragment orbitals allows for a very accurate and informative interpretation of MOs, but the same procedure cannot be performed for asymmetric complexes, such as Schrock and Fischer carbenes. In this work, we present a straight-forward approach for classifying and quantifying MO contributions to a particular metal–ligand interaction. Our approach utilizes the topology of MO density contributions to a cross-section of an inter-nuclear region, and is computationally inexpensive and applicable to symmetric and asymmetric complexes alike. We also apply the same approach with similar decompositions using Natural Bond Orbitals (NBO) and the recently developed Fragment, Atomic, Localized, Delocalized and Interatomic (FALDI) density decomposition scheme. In particular, FALDI analysis provides additional insights regarding the multi-centric nature of metal-carbene bonds without resorting to expensive multi-reference calculations.  相似文献   

8.
The reaction of 1,2-dialkyldiaziridines with ketenes proceeds through the N—N bond cleavage to form three types of structures containing the N—C—N fragment, viz., 1,3-dialkylimidazolidin-4-ones, 3,5-diacyl-3,5-diazahept-1-enes, and β-lactams. The reaction pathway depends on the reaction conditions and the structures of the starting compounds. Dedicated to Corresponding Member of the Russian Academy of Sciences E. P. Serebryakov on the occasion of his 70th birthday. __________ Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 997–1006, April, 2005.  相似文献   

9.
The synthesis and characterization of binary Cu(II)- (1), Co(II)- (2), Ni(II)- (3), Mn(II)- (4), Cr(III)- (5), Fe(III)- (6), La(III)- (7), UO2(VI)- (8) complexes with sparfloxacin (HL1) and ternary Cu(II)- (9), Co(II)- (10), Ni(II)- (11), Mn(II)- (12), Cr(III)- (13), Fe(III)- (14), La(III)- (15), UO2(VI)- (16) complexes with sparfloxacin (HL1) and dl-alanine (H2L2) complexes are reported using elemental analysis, molar conductance, magnetic susceptibility, IR, UV–Vis, thermal analysis and 1H-NMR spectral studies.The molar conductance measurements of all the complexes in DMF solution correspond to non-electrolytic nature.All complexes were of the high-spin type and found to have six-coordinate octahedral geometry except the Cu(II) complexes which were four coordinate, square planar and U- and La-atoms in the uranyl and lanthanide have a pentagonal bipyramidal coordination sphere. The antimicrobial activity of these complexes has been screened against two Gram-positive and two Gram-negative bacteria. Antifungal activity against two different fungi has been evaluated and compared with reference drug sparfloxacin. All the binary and ternary complexes showed remarkable potential antimicrobial activity higher than the recommended standard agents. Ni(II)- and Mn(II) complexes exhibited higher potency as compared to the parent drug against Gram-negative bacteria.  相似文献   

10.
A new series of metal complexes of Ti(IV), V(IV), Y(III), Zr(IV), Ce(IV) and U(VI) with levofloxacin (Levo) were synthesized and characterized by elemental analysis, molar conductivity, magnetic moment measurements, UV–Vis, FT-IR and 1H NMR, XRD as well as TG-DTG techniques. The data indicated that levofloxacin reacts as a bidentate ligand chelate to the metal ion through the pyridone oxygen and one carboxylato oxygen. The thermal dehydration and decomposition of the complexes were studied kinetically using Coats–Redfern and Horowitz–Metzger methods, and the thermodynamic data reflected the thermal stability for all complexes. The calculated bond length and the bond stretching force constant, F(U=O), values for UO2 bond are 1.86 Å and 690.67 N m?1. The biological activities of the levofloxacin, meta-salts and their metal complexes were assayed against different bacterial and fungal species as well as their effect on degradation of calf thymus DNA.  相似文献   

11.
The thermal cycloaddition between alkynyl metal(0) Fischer carbenes and nitrones has been studied computationally within the Density Functional Theory framework. It is found that the [3 + 2] cycloaddition takes place via transition structures that are more asynchronous and less aromatic than their nonorganometallic analogues. These reactions are also found to be completely regioselective in favor of the cycloadduct possessing the Fischer carbene moiety and the oxygen atom of the nitrone in a 1,3-relative disposition. These results are consistent with the role of the Fischer carbene moiety as an electron withdrawing group that enhances the electrophilic character of the alkyne group acting as a Michael acceptor as a dipolarophile. In terms of the isolobal analogy model, it can be concluded that alkynylalkoxy metal(0) carbene complexes act in this reaction as organometallic analogues of organic alkyl-propiolates with enhanced electrophilic character.  相似文献   

12.
The new Pd(II), Pt(II), Re(V), Mo(VI) and W(VI) complexes of 2-hydroxynicotinic acid (H2nicO), trans-[PdCl(HnicO)(PPh3)2]·0.75CH3CN (1), K[PdCl(HnicO)2]·H2O (2), [Pd(HnicO)2(bipy)] (3), cis-[PtCl(HnicO)(PPh3)2]·0.75CH3OH·0.5H2O (4), [PtCl(HnicO)(bipy)] (5), cis-[ReOI2(HnicO)(PPh3)] (6), Na2[Mo2O6(HnicO)2]·5H2O (7), Na2[Mo4O12(HnicO)2]·2H2O (8) and Na2[W2O6(HnicO)2]·5H2O (9) have been prepared. The crystal structures of 1 and 4, were determined by X-ray diffraction and show the HnicO ligand coordinated to palladium or platinum through the nitrogen atom only. Infrared, Raman, 1H and 13C{1H} NMR spectroscopic data for the complexes are presented and are in agreement with the crystallographic results.  相似文献   

13.
A series of dithienylethene (DTE)-containing 2,2'-bipyridine ligands and their zinc(II) diacetate, zinc(II) dichloro, rhenium(I) tricarbonyl bromo, and ruthenium(II) bis(bipyridine) complexes have been designed and synthesized, and their photochromic, photophysical, and quadratic nonlinear optical properties have been studied. Upon UV irradiation at 350 nm, the ligands and complexes undergo ring closure of the DTE units, with a good to excellent photocyclization yield. In the case of the Re(I) and Ru(II) complexes, the photocyclization of the DTE units can also be triggered using visible light, upon excitation into the metal-to-ligand charge-transfer (MLCT) bands at 400 and 490 nm, respectively. Molecular quadratic nonlinear optical (NLO) responses of the complexes have been determined by using either the electrical field induced second harmonic generation (EFISH) or harmonic light scattering (HLS) technique at 1910 nm. These studies reveal a large increase of the second-order NLO activity after UV irradiation and subsequent formation of the ring-closed isomers. This efficient enhancement clearly reflects the delocalization of the π-electron system and the formation of strong push-pull chromophores in the closed forms. The combination of the photochromic DTE-based bipyridine ligand with luminescent Re(I) and Ru(II) fragments also allows the photoregulation of the emission, leading to an efficient quenching of the ligand-based 77 K luminescence and demonstrating that the photocontrol of two optical properties, linear and nonlinear, could be achieved by using the same photochromic ligand.  相似文献   

14.
Summary Benzenesulphonylhydrazine (HB) reacts with bivalent metal ions either in the keto-or enol forms. The complexes have been characterized by spectral (u.v., i.r., n.m.r.,), magnetic and thermal (d.t.a., d.t.g, t.g., d.s.c.) measurements. I.r. spectra suggest that HB is monodentate coordinatingvia NH or NH2, depending on the medium of the reaction. The participation of the O=S=O group in bondingvia bridge-formation in a polymeric chain is also considered. The substitution of ethanol in the CoII complex, [(CoB2EtOH)n], by H2O, pyridine or acetonitrile was also investigated.  相似文献   

15.
The first direct alpha-lithiation of 4-DMAP has been performed via reaction with the BuLi-Me(2)N(CH(2))(2)OLi (BuLi-LiDMAE) reagent. This new methodology avoids the use of a activation-lithiation-regeneration sequence or halogen-metal exchange classically employed. New useful DMAP-containing synthons and polyheterocycles have been efficiently prepared.  相似文献   

16.
Reactions of 3,6-bis(2-pyridyl)-4-phenylpyridazine (Lph) with [(η6-arene)Ru(μ-Cl)Cl]2 (arene = C6H6, p-iPrC6H4Me and C6Me6), [(η5-C5Me5)M(μ-Cl)Cl]2, (M = Rh and Ir) and [(η5-Cp)Ru(PPh3)2Cl] (Cp = C5H5, C5Me5 and C9H7) afford mononuclear complexes of the type [(η6-arene)Ru(Lph)Cl]PF6, [(η5-C5Me5)M(Lph)Cl]PF6 and [(Cp)Ru(Lph)(PPh3)]PF6 with different structural motifs depending on the π-acidity of the ligand, electronic properties of the central metal atom and nature of the co-ligands. Complexes [(η6-C6H6)Ru(Lph)Cl]PF61, [(η6-p-iPrC6H4Me)Ru(Lph)Cl]PF62, [(η5-C5Me5)Ir(Lph)Cl]PF65, [(η5-Cp)Ru(PPh3)(Lph)]PF6, (Cp = C5H5, 6; C5Me5, 7; C9H7, 8) show the type-A binding mode (see text), while complexes [(η6-C6Me6)Ru(Lph)Cl]PF63 and [(η5-C5Me5)Rh(Lph)Cl]PF64 show the type-B binding mode (see text). These differences reflect the more electron-rich character of the [(η6-C6Me6)Ru(μ-Cl)Cl]2 and [(η5-C5Me5)Rh(μ-Cl)Cl]2 complexes compared to the other starting precursor complexes. Binding modes of the ligand Lph are determined by 1H NMR spectroscopy, single-crystal X-ray analysis as well as evidence obtained from the solid-state structures and corroborated by density functional theory calculations. From the systems studied here, it is concluded that the electron density on the central metal atom of these complexes plays an important role in deciding the ligand binding sites.  相似文献   

17.
Parent genistein and its new amine complexes with morpholine and piperazine were studied comparatively in the solid and liquid states by X-ray crystallography and 13C and 15N NMR spectroscopy. Biochanine A and its complexes were used as reference. Secondary deuterium isotope effects on 13C chemical shifts in solution were studied in parent isoflavones and their morpholine and piperazine complexes to aid in evaluation of the electronic distribution in both systems. In addition, to quantify the extent of proton transfer as well as to establish strong hydrogen bonding of the 7-OH group in a morpholine complex, proton transfer from the 7-OH group to the piperazine nitrogen atom was also confirmed by 13C NMR in the solid state and by X-ray studies. The effect of 7-OH deprotonation yields a high frequency shift of 7-8 ppm on the C-7 carbon atom of the piperazine complex whereas it is as large as 12 ppm in the morpholine complex in the solid. The former trend is confirmed from solution state concentration studies which also show that the isoflavones have a strong tendency to form complexes with bases. Depending on the pKa difference between the isoflavones and the base this leads either to proton transfer and ion-pair formation or, in the case of a larger pKa difference, to a hydrogen bonded ion pair. The concentration studies show formation of a 1:1 genistein-piperazine complex in DMSO. Addition of water leads to formation of solvent separated ions. The C-5 OH group is involved in strong intramolecular hydrogen bonding leading to a pseudo aromatic ring extending the aromatic part of the drug pharmacophore. The analysis also suggests the way that both the C-7 and C-4' hydroxyl group of genistein may participate in stabilising the ternary inhibitor complexes of tyrosine-specific kinases or DNA topoisomerase II.  相似文献   

18.
19.
Beyond the classic N-heterocyclic carbenes (NHCs) there is a subclass of NHCs called mesoionic carbenes (MICs). This review focuses on recent advances in the area of 1,2,3-triazol-5-ylidenes as the most abundant class of MICs and their metal complexes. The study of mesoionic 1,2,4- and 1,3,4-trisubstituted 1,2,3-triazol-5-ylidene transition metal complexes is a research area with a history of just ~10 years. During this relatively short period, hundreds of these complexes have appeared in the literature, reflecting their high stability and simpler synthesis compared with NHCs. Specifically, this review is focused on advances in the synthesis of 1,2,3-triazol-5-ylidene metal complexes derived from palladium, silver, gold, ruthenium, iridium, rhodium, iron, molybdenum, cobalt, nickel, platinum, and osmium, together with their catalytic, medicinal, and photophysical applications.  相似文献   

20.
Symbiodinolide (1) is a polyol macrolide with a molecular weight of 2859 mu. As one of the degradation reactions, cross-metathesis of 2, which is a methyl ester of 1, with ethylene was performed to give the C33-C42 degraded fragment 4. The absolute configuration of 4 was estimated to be (36S,40S) by Mosher method. Stereoselective synthesis of 4 was achieved in 14 steps from l-aspartic acid. Synthetic bis-(S)- and (R)-MTPA esters exhibited the spectroscopic data identical with those of bis-(S)- and (R)-MTPA esters derived from the degraded fragment 4. Thus, the absolute stereochemistry of 4 was elucidated to be (36S,40S).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号