首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.

Background

The new REACH legislation requires assessment of a large number of chemicals in the European market for several endpoints. Developmental toxicity is one of the most difficult endpoints to assess, on account of the complexity, length and costs of experiments. Following the encouragement of QSAR (in silico) methods provided in the REACH itself, the CAESAR project has developed several models.

Results

Two QSAR models for developmental toxicity have been developed, using different statistical/mathematical methods. Both models performed well. The first makes a classification based on a random forest algorithm, while the second is based on an adaptive fuzzy partition algorithm. The first model has been implemented and inserted into the CAESAR on-line application, which is java-based software that allows everyone to freely use the models.

Conclusions

The CAESAR QSAR models have been developed with the aim to minimize false negatives in order to make them more usable for REACH. The CAESAR on-line application ensures that both industry and regulators can easily access and use the developmental toxicity model (as well as the models for the other four endpoints).
  相似文献   

2.

Background

The new European Regulation on chemical safety, REACH, (Registration, Evaluation, Authorisation and Restriction of CHemical substances), is in the process of being implemented. Many chemicals used in industry require additional testing to comply with the REACH regulations. At the same time EU member states are attempting to reduce the number of animals used in experiments under the 3 Rs policy, (refining, reducing, and replacing the use of animals in laboratory procedures). Computational techniques such as QSAR have the potential to offer an alternative for generating REACH data. The FP6 project CAESAR was aimed at developing QSAR models for 5 key toxicological endpoints of which skin sensitisation was one.

Results

This paper reports the development of two global QSAR models using two different computational approaches, which contribute to the hybrid model freely available online.

Conclusions

The QSAR models for assessing skin sensitisation have been developed and tested under stringent quality criteria to fulfil the principles laid down by the OECD. The final models, accessible from CAESAR website, offer a robust and reliable method of assessing skin sensitisation for regulatory use.
  相似文献   

3.
4.

Background

Intermolecular autophosphorylation at Tyr416 is a conserved mechanism of activation among the members of the Src family of nonreceptor tyrosine kinases. Like several other tyrosine kinases, Src can catalyze the thiophosphorylation of peptide and protein substrates using ATPγS as a thiophosphodonor, although the efficiency of the reaction is low.

Results

Here, we have characterized the ability of Src to auto-thiophosphorylate. Auto-thiophosphorylation of Src at Tyr416 in the activation loop proceeds efficiently in the presence of Ni2+, resulting in kinase activation. Other tyrosine kinases (Ack1, Hck, and IGF1 receptor) also auto-thiophosphorylate in the presence of Ni2+. Tyr416-thiophosphorylated Src is resistant to dephosphorylation by PTP1B phosphatase.

Conclusions

Src and other tyrosine kinases catalyze auto-thiophosphorylation in the presence of Ni2+. Thiophosphorylation of Src occurs at Tyr416 in the activation loop, and results in enhanced kinase activity. Tyr416-thiophosphorylated Src could serve as a stable, persistently-activated mimic of Src.
  相似文献   

5.

Background

Mutagenicity is the capability of a substance to cause genetic mutations. This property is of high public concern because it has a close relationship with carcinogenicity and potentially with reproductive toxicity. Experimentally, mutagenicity can be assessed by the Ames test on Salmonella with an estimated experimental reproducibility of 85%; this intrinsic limitation of the in vitro test, along with the need for faster and cheaper alternatives, opens the road to other types of assessment methods, such as in silico structure-activity prediction models.A widely used method checks for the presence of known structural alerts for mutagenicity. However the presence of such alerts alone is not a definitive method to prove the mutagenicity of a compound towards Salmonella, since other parts of the molecule can influence and potentially change the classification. Hence statistically based methods will be proposed, with the final objective to obtain a cascade of modeling steps with custom-made properties, such as the reduction of false negatives.

Results

A cascade model has been developed and validated on a large public set of molecular structures and their associated Salmonella mutagenicity outcome. The first step consists in the derivation of a statistical model and mutagenicity prediction, followed by further checks for specific structural alerts in the "safe" subset of the prediction outcome space. In terms of accuracy (i.e., overall correct predictions of both negative and positives), the obtained model approached the 85% reproducibility of the experimental mutagenicity Ames test.

Conclusions

The model and the documentation for regulatory purposes are freely available on the CAESAR website. The input is simply a file of molecular structures and the output is the classification result.
  相似文献   

6.

Background

Novel six organic donor-π-acceptor molecules (D-π-A) used for Bulk Heterojunction organic solar cells (BHJ), based on thienopyrazine were studied by density functional theory (DFT) and time-dependent DFT (TD-DFT) approaches, to shed light on how the π-conjugation order influence the performance of the solar cells. The electron acceptor group was 2-cyanoacrylic for all compounds, whereas the electron donor unit was varied and the influence was investigated.

Methods

The TD-DFT method, combined with a hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP) in conjunction with a polarizable continuum model of salvation (PCM) together with a 6-31G(d,p) basis set, was used to predict the excitation energies, the absorption and the emission spectra of all molecules.

Results

The trend of the calculated HOMO–LUMO gaps nicely compares with the spectral data. In addition, the estimated values of the open-circuit photovoltage (Voc) for these compounds were presented in two cases/PC60BM and/PC71BM.

Conclusion

The study of structural, electronics and optical properties for these compounds could help to design more efficient functional photovoltaic organic materials.
  相似文献   

7.

Background

NAD+ is a coenzyme for hydride transfer enzymes and a substrate for sirtuins and other NAD+-dependent ADPribose transfer enzymes. In wild-type Saccharomyces cerevisiae, calorie restriction accomplished by glucose limitation extends replicative lifespan in a manner that depends on Sir2 and the NAD+ salvage enzymes, nicotinic acid phosphoribosyl transferase and nicotinamidase. Though alterations in the NAD+ to nicotinamide ratio and the NAD+ to NADH ratio are anticipated by models to account for the effects of calorie restriction, the nature of a putative change in NAD+ metabolism requires analytical definition and quantification of the key metabolites.

Results

Hydrophilic interaction chromatography followed by tandem electrospray mass spectrometry were used to identify the 12 compounds that constitute the core NAD+ metabolome and 6 related nucleosides and nucleotides. Whereas yeast extract and nicotinic acid increase net NAD+ synthesis in a manner that can account for extended lifespan, glucose restriction does not alter NAD+ or nicotinamide levels in ways that would increase Sir2 activity.

Conclusions

The results constrain the possible mechanisms by which calorie restriction may regulate Sir2 and suggest that provision of vitamins and calorie restriction extend lifespan by different mechanisms.
  相似文献   

8.

Background

Luciferases, enzymes that catalyze bioluminescent reactions in different organisms, have been extensively used for bioanalytical purposes. The most well studied bioluminescent system is that of firefly and other beetles, which depends on a luciferase, a benzothiazolic luciferin and ATP, and it is being widely used as a bioanalytical reagent to quantify ATP. Protein kinases are proteins that modify other proteins by transferring phosphate groups from a nucleoside triphosphate, usually ATP.

Methods

Here, we used a red-light emitting luciferase from Phrixotrix hirtus railroad worm to determine the activity of kinases in a coupled assay, based on luminescence that is generated when luciferase is in the presence of its substrate, the luciferin, and ATP.

Results

In this work we used, after several optimization reactions, creatine kinase isoforms as well as ?NEK7 protein kinase in the absence or presence of ATP analogous inhibitors  to validate this new luminescence method.

Conclusion

With this new approach we validated a luminescence method to quantify kinase activity, with different substrates and inhibition screening tests, using a novel red-light emitting luciferase as a reporter enzyme.
  相似文献   

9.

Background

Gamma glutamylcyclotransferase (GGCT) has been proved to be involved in various cancers, but the biological function of GGCT in gastric cancer is still largely unknown.

Methods

The expression level of GGCT was evaluated by informatics analyses based on the Oncomine database. GGCT gene was then effectively knocked down via lentivirus mediated short hairpin RNA (shRNA) system. Then a series of functional assays, including MTT, colony formation and flow cytometry analysis were conducted on gastric cancer cells following GGCT knockdown.

Results

We found GGCT is commonly up-regulated in gastric cancer tissues. Furthermore, MTT analysis showed that GGCT depletion significantly inhibited cell proliferation in MGC80-3 and AGS cells. Colony formation assay revealed that depletion of GGCT reduced the colony formation ability in gastric cancer cells. What’s more, cell cycle analysis showed that depletion of GGCT induced gastric cancer cell cycle arrested G2/M phase. More importantly, cell apoptosis analysis further revealed that GGCT inhibition induced early and late cell apoptosis in gastric cancer.

Conclusion

This study suggests GGCT is essential for gastric cancer proliferation and its downregulation may provide a potential anticancer therapy for gastric cancer.
  相似文献   

10.

Background

One strategy to increase the stability of proteins is to reduce the area of water-accessible hydrophobic surface.

Results

In order to test it, we replaced 14 solvent-exposed hydrophobic residues of acetylcholinesterase by arginine. The stabilities of the resulting proteins were tested using denaturation by high temperature, organic solvents, urea and by proteolytic digestion.

Conclusion

Altough the mutational effects were rather small, this strategy proved to be successful since half of the mutants showed an increased stability. This stability may originate from the suppression of unfavorable interactions of nonpolar residues with water or from addition of new hydrogen bonds with the solvent. Other mechanisms may also contribute to the increased stability observed with some mutants. For example, introduction of a charge at the surface of the protein may provide a new coulombic interaction on the protein surface.
  相似文献   

11.

Background

The smoothelin-like 1 protein (SMTNL1) can associate with tropomyosin (Tpm) and calmodulin (CaM), two proteins essential to the smooth muscle contractile process. SMTNL1 is phosphorylated at Ser301 by protein kinase A during calcium desensitization in smooth muscle, yet the effect of SMTNL1 phosphorylation on Tpm- and CaM-binding has yet to be investigated.

Results

Using pull down studies with Tpm-Sepharose and CaM-Sepharose, we examined the interplay between Tpm binding, CaM binding, phosphorylation of SMTNL1 and calcium concentration. Phosphorylation greatly enhanced the ability of SMTNL1 to associate with Tpm in vitro; surface plasmon resonance yielded a 10-fold enhancement in K D value with phosphorylation. The effect on CaM binding is more complex and varies with the availability of calcium.

Conclusions

Combining both CaM and Tpm with SMTNL1 shows that the binding to both is mutually exclusive.
  相似文献   

12.

Background

Stilbene cleaving oxygenases (SCOs), also known as lignostilbene-α,β-dioxygenases (LSDs) mediate the oxidative cleavage of the olefinic double bonds of lignin-derived intermediate phenolic stilbenes, yielding small modified benzaldehyde compounds. SCOs represent one branch of the larger carotenoid cleavage oxygenases family. Here, we describe the structural and functional characterization of an SCO-like enzyme from the soil-born, bio-control agent Pseudomonas brassicacearum.

Methods

In vitro and in vivo assays relying on visual inspection, spectrophotometric quantification, as well as liquid-chormatographic and mass spectrometric characterization were applied for functional evaluation of the enzyme. X-ray crystallographic analyses and in silico modeling were applied for structural investigations.

Results

In vitro assays demonstrated preferential cleavage of resveratrol, while in vivo analyses detected putative cleavage of the straight chain carotenoid, lycopene. A high-resolution structure containing the seven-bladed β-propeller fold and conserved 4-His-Fe unit at the catalytic site, was obtained. Comparative structural alignments, as well as in silico modelling and docking, highlight potential molecular factors contributing to both the primary in vitro activity against resveratrol, as well as the putative subsidiary activities against carotenoids in vivo, for future validation.

Conclusions

The findings reported here provide validation of the SCO structure, and highlight enigmatic points with respect to the potential effect of the enzyme’s molecular environment on substrate specificities for future investigation.
  相似文献   

13.

Background and methods

Several standard powdered black pigments were characterized by means of thermogravimetry TG-DTG and allied techniques. These pigments were used to make standard plaster frescoes at this purpose prepared. The latter ones were subjected to Raman and reflectance analysis. The results obtained, together with TG data, were chemometrically processed and used to identify an analogous standard fresco fabricated by an unknown commercial black pigment, obtaining excellent results.

Results

The same colorimetric and reflectometric techniques, coupled with suitable chemometric techniques, were then successfully used to identify the type of black pigment present in an ancient roman fresco of the Imperial Age (30 B.C.).

Conclusion

TG-DTG resulted useful techniques to autenticate powdered black pigments.Colorimetry and Raman, but also the only colorimetry, were useful to identify an ancient black pigment in situ.
  相似文献   

14.

Background

Human phospholipid scramblase 1 (hPLSCR1) was initially identified as a Ca2+ dependent phospholipid translocator involved in disrupting membrane asymmetry. Recent reports revealed that hPLSCR1 acts as a multifunctional signaling molecule rather than functioning as scramblase. hPLSCR1 is overexpressed in a variety of tumor cells and is known to interact with a number of protein molecules implying diverse functions.

Results

In this study, the nuclease activity of recombinant hPLSCR1 and its biochemical properties have been determined. Point mutations were generated to identify the critical region responsible for the nuclease activity. Recombinant hPLSCR1 exhibits Mg2+ dependent nuclease activity with an optimum pH and temperature of 8.5 and 37 °C respectively. Experiments with amino acid modifying reagents revealed that histidine, cysteine and arginine residues were crucial for its function. hPLSCR1 has five histidine residues and point mutations of histidine residues to alanine in hPLSCR1 resulted in 60 % loss in nuclease activity. Thus histidine residues could play a critical role in the nuclease activity of hPLSCR1.

Conclusions

This is the first report on the novel nuclease activity of the multi-functional hPLSCR1. hPLSCR1 shows a metal dependent nuclease activity which could play a role in key cellular processes that needs to be further investigated.
  相似文献   

15.

Background

Etravirine (ETV) was approved as the second generation drug for use in individuals infected with HIV-1 in 2008 by the U.S. FDA with its unique antiviral activity, high specificity, and low toxicity. However, there are some shortcomings of the existing synthetic routes, such as the long reaction time and poor yield.

Results

This article describes our efforts to develop an efficient, practical, microwave-promoted synthetic method for one key intermediate of ETV, which is capable of being operated on a scale-up synthesis level. Through this optimized synthetic procedure, the amination reaction time decreased from 12 h to 15 min and the overall yield improved from 30.4 to 38.5%.

Conclusion

Overall, we developed a practical synthesis of ETV via a microwave-promoted method, and the synthetic procedure could be amenable to scale-up, and production costs could be significantly lowered.
  相似文献   

16.

Background

Generally, proteases in medicinal plants had different therapeutic effects such as anti-inflammatory effect; modulate the immune response and inhibitory effect toward tumor growth. In this study, protease was purified and characterized from miswak roots, as medicinal plant and natural toothbrush.

Results

Physical and chemical characterization of cysteine protease P1 were studied such as pH optimum (6.5), optimum temperature (50?°C), thermal stability (50?°C) and Km (3.3?mg azocasein/ml). The enzyme digested some proteins in the order of caseine > haemoglobin > egg albumin >gelatin > bovine serum albumin. Hg2+ had strong inhibitory effect on enzyme activity compared with other metal ions. Kinetic of inhibition for determination the type of protease was studied. Iodoactamide and p-Hydroximercuribenzaoic acid (p-HMB) caused strong inhibitory effect on enzyme activity indicating the enzyme is cysteine protease.

Conclusions

The biochemical characterization of this enzyme will be display the suitable conditions for using of this enzyme in toothpaste in the future and the enzyme may be used in other applications.
  相似文献   

17.

Background

Triacylglycerols (TAGs) are the major form of energy storage in eukaryotes. Diacylglycerol acyltransferases (DGATs) catalyze the final and rate-limiting step of TAG biosynthesis. Mammalian DGATs are classified into DGAT1 and DGAT2 subfamilies. It was unclear which DGAT was the major isoform expressed in animal cells. The objective was to identify the major DGAT mRNA expressed in cultured mouse adipocytes and macrophages and compared it to that expressed in tung tree seeds.

Methods

qPCR evaluated DGAT mRNA levels in mouse 3?T3-L1 adipocytes and RAW264.7 macrophages and tung tree seeds.

Results

TaqMan qPCR showed that DGAT2 mRNA levels were 10–30 fold higher than DGAT1 in adipocytes and macrophages, and DGAT mRNA levels in adipocytes were 50–100-fold higher than those in macrophages. In contrast, the anti-inflammatory tristetraprolin/zinc finger protein 36 (TTP/ZFP36) mRNA levels were 2–4-fold higher in macrophages than those in adipocytes and similar to DGAT1 in adipocytes but 100-fold higher than DGAT1 in macrophages. SYBR Green qPCR analyses confirmed TaqMan qPCR results. DGAT2 mRNA as the major DGAT mRNA in the mouse cells was similar to that in tung tree seeds where DGAT2 mRNA levels were 10–20-fold higher than DGAT1 or DGAT3.

Conclusion

The results demonstrated that DGAT2 mRNA was the major form of DGAT mRNA expressed in mouse adipocytes and macrophages and tung tree seeds.
  相似文献   

18.

Background

Nitroaromatic and chloronitroaromatic compounds have been a subject of great interest in industry and recently in medical-pharmaceutic field. 2-Chloro-4-nitro/2-chloro-5-nitrobenzoic acids and 4-nitrobenzoic acid are promising new agents for the treatment of main infectious killing diseases in the world: immunodeficiency diseases and tuberculosis.

Results

New ethanolamine nitro/chloronitrobenzoates were synthesized and characterized by X-ray crystallography, UV–vis, FT-IR and elementary analysis techniques. The toxicity of the compounds prepared and correspondent components was evaluated using Hydractinia echinata as test system. A significant lower toxicity was observed for nitro-derivative compared with chloronitro-derivatives and individual components. Crystallographic studies, together with the chemical reactivity and stability profiles resulted from density functional theory and ab initio molecular orbital calculations, explain the particular behavior of ethanolamine 4-nitrobenzoate in biological test.

Conclusions

The experimental and theoretical data reveal the potential of these compounds to contribute to the design of new active pharmaceutical ingredients with lower toxicity.
  相似文献   

19.

Background

BTBD10 binds to Akt and protein phosphatase 2A (PP2A) and inhibits the PP2A-mediated dephosphorylation of Akt, thereby keeping Akt activated. Previous studies have suggested that BTBD10 plays an important role in preventing motor neuronal death and accelerating the growth of pancreatic beta cells. Because levels of BTBD10 expression are much lower in many non-nervous tissues than nervous tissues, there may be a relative of BTBD10 that has BTBD10-like function in non-neuronal cells.

Results

A 419-amino-acid BTBD10-like protein, named KCTD20 (potassium channel tetramerization protein domain containing 20), was to found to bind to all Akt isoforms and PP2A. Overexpression of KCTD20 increased Akt phosphorylation at Thr308, as BTBD10 did, which suggests that KCTD20 as well as BTBD10 positively regulates the function of Akt. KCTD20 was ubiquitously expressed in non-nervous as well as nervous tissues.

Conclusions

KCTD20 is a positive regulator of Akt and may play an important role in regulating the death and growth of some non-nervous and nervous cells.
  相似文献   

20.

Background

Construction of electrochemical impedance sensors by the self-assembly technique has become a promising strategy for the `label-free' detection of protein-ligand interactions. However, previous impedance sensors are devoid of an inherent electrochemical signal, which limits the standardization of the sensors for protein recognition in a reproducible manner.

Results

We designed and synthesized an anthraquinonyl glycoside (AG) where the anthraquinone (AQ) moiety can bind to the surface of a graphene-based working electrode while the glycoside serving as a ligand for lectin. By measuring the inherent voltammetric signal of AQ, the glycosides decorated on the working electrode could be simply quantified to obtain electrodes with a unified signal window. Subsequently, impedance analysis showed that the `standardized' electrodes gave a reproducible electrochemical response to a selective lectin with no signal variation in the presence of unselective proteins.

Conclusion

Anthraquinone-modified ligands could be used to facilitate the standardization of electrochemical impedance sensors for the reproducible, selective analysis of ligand-protein interactions.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号