首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Variable temperature (?55 to ?100 °C) studies of the infrared spectra (4,000–400 cm?1) of chlorocyclobutane, c-C4H7Cl, dissolved in liquid xenon have been carried out. The infrared spectrum (4,000–100 cm–1) of the gas has also been recorded. For this puckered ring molecule the enthalpy difference between the more stable equatorial conformer and the axial form, has been determined to be 361 ± 17 cm?1 (4.32 ± 0.20 kJ/mol). This stability order is consistent with that predicted by ab initio calculations but the ?H is much lower than the average energy value of 646 ± 73 cm?1 obtained from the MP2 ab initio calculations or 611 ± 28 cm?1 from the B3LYP density functional theory calculations. The percentage of the axial conformer present at ambient temperature is estimated to be 15 ± 1%. By utilizing previously reported microwave rotational constants for both conformers combined with ab initio MP2(full)/6–311+G(d,p) predicted structural values, adjusted r 0 parameters have been obtained. The determined heavy atom structural parameters for the equatorial conformer are: the distances C–Cl = 1.783(5), C1–C4 = 1.539(3), C4–C6 = 1.558(3) Å, and angles ∠C6C4C1 = 86.9(5), ∠C4C1C5 = 89.7(5)°, and for the axial conformer are: the distances C–Cl = 1.803(5), C1–C4 = 1.547(3), C4–C6 = 1.557(3) Å, and angles ∠C6C4C1 = 86.3(5), ∠C4C1C5 = 88.9(5) and the puckering angles for the equatorial and axial conformers are 30.7(5)° and 22.3(5)°, respectively. The conformational stabilities, harmonic force fields, infrared intensities, Raman activities, depolarization ratios and vibrational frequencies have been obtained for both conformers from MP2(full)/6-31G(d) ab initio calculations and compared to experimental values where available. The results are discussed and compared to the corresponding properties of some similar molecules.  相似文献   

2.
The infrared spectra (4,000–30 cm?1) of the gas and solid and the Raman spectrum of liquid 2,2-difluoroethanol as well as variable temperature infrared spectra of krypton/xenon solutions have been recorded. From all these data, two (Gg and Tg) out of the five possible stable conformers have been confidently identified. The order of the stabilities has been predicted to be Gg > Tg > Gt > Gg′ > Tt by utilizing ab initio MP2 (full) and DFT (B3LYP method) calculations, where the first indicator (capital letter) is in reference to rotation around the C–C bond (G = gauche or T = trans) and the second one (small letter) refers to the orientation of the hydroxyl group. The percentage of the minor conformer Tg, at ambient temperature, is estimated to be (16 ± 3%). The optimized geometries, fundamental frequencies, infrared intensities, Raman activities, and depolarization values as well as centrifugal distortion constants have been obtained from ab initio and density functional theory calculations by utilizing a variety of basis sets as well as those with diffuse functions. By utilizing the previously reported microwave rotational constants for two isotopomers of the Gg conformer combined with ab initio MP2(full)/6-311+G(d,p) predicted structural values, adjusted r 0 parameters have been obtained. The determined heavy atom distances (Å) for the Gg conformer are: C1–C2 = 1.510(3), C2–F4 = 1.371(3), C2–F5 = 1.362(3), C1–O3 = 1.412(3) Å and angles ∠O3C1C2 = 111.0(5), ∠F4C2C1 = 108.8(5), ∠F5C2C1 = 109.8(5), τF4C2C1O3 = 63.5(5), τF5C2C1O3 = 179.1(5)°. Barriers of internal rotation have been obtained and vibrational assignments for the Gg and Tg conformers are given. The five predicted centrifugal distortion constants compared to the experimental values are in reasonable agreement except for ?K, which appears to be in error. The results are discussed and the structural parameters compared to the corresponding ones for 2-fluoroethanol and 2,2,2-trifluoroethanol where those for the latter molecule have been redetermined. The currently determined heavy atom parameters are quite different from the earlier assumed values, which led to poor values of the six adjusted parameters.  相似文献   

3.
Variable temperature (−55 to −100 °C) studies of the infrared spectra (3200 to 100 cm−1) of cyclopropylmethyl isocyanate, c-C3H5CH2NCO, dissolved in liquefied xenon, have been carried out. The infrared spectra (gas and solid) as well as the Raman spectrum of the liquid have been recorded from 3200 to 100 cm−1. By analyzing six conformer pairs in xenon solutions, an enthalpy difference of 193 ± 19 cm−1 (2.31 ± 0.23 kJ/mol) was obtained with the gauche–cis rotamer (the first designation indicates the orientation of the CNCO group with respect to the three-membered ring, the second designation indicates the relative orientation of the NCO group with respect to the bridging CC bond) the more stable form and the only form present in polycrystalline solid. The abundance of the cis–trans conformer present at ambient temperature is 16 ± 1%. The potential function governing the conformational interchange has been obtained from B3LYP/6-31G(d) calculations and the two-dimensional potential has been obtained. From MP2 ab initio calculations utilizing various basis sets with diffuse functions, the gauche–cis conformer is predicted to be more stable by 223 to 269 cm−1, which is consistent with the experimental results. However, without diffuse functions the predicted conformational energy differences are much smaller (77–166 cm−1). Similar diffuse function dependency affects density functional theory calculations by the B3LYP method to a lesser extent. A complete vibrational assignment for the gauche–cis conformer is proposed and several fundamentals for the cis–trans conformer have been identified. The structural parameters, dipole moments, conformational stability, vibrational frequencies, infrared intensities and Raman activities have been predicted from ab initio calculations and r0 structural parameters are estimated. These experimental and theoretical results are compared to the corresponding quantities of some similar molecules.  相似文献   

4.
Variable temperature (−105 to −150 °C) studies of the infrared spectra (3500–400 cm−1) of 1,1-dimethylhydrazine, (CH3)2NNH2, in liquid krypton have been carried out. No convincing spectral evidence could be found for the trans conformer which is expected to be at least 600 cm−1 less stable than the gauche form. The structural parameters, dipole moments, conformational stability, vibrational frequencies, and infrared and Raman intensities have been predicted from MP2/6-31G(d) ab initio calculations. The predicted infrared and Raman spectra are compared to the experimental ones. The adjusted r0 parameters from MP2/6-311+G(d,p) calculations are compared to those reported from an electron diffraction study. The energy differences between the gauche and trans conformers have been obtained from MP2 ab initio calculations as well as from density functional theory by the B3LYP method calculations from a variety of basis sets. All of these calculations indicate an energy difference of 650–900 cm−1 with the B3LYP calculations predicted the larger values. The potential function governing the conformational interchange has been predicting from both types of calculations and comparisons have been made. The barrier to internal rotation by the independent rotor model of the inner methyl group is predicted to have a value of 1812 cm−1 and that of the outer one of 1662 cm−1 from ab initio MP2/6-31G(d) calculations. These values agree well with the experimentally determined values of 1852±16 and 1558±12 cm−1, respectively, from a fit of the torsional transitions with the coupled rotor model. For the coupled rotor model the predicted V33 (sin 3τ0 sin 3τ1 term) value which ranged from 190 to 232 cm−1 is in reasonable agreement with the experimental value of 268±3 cm−1 but the predicted V33 (cos 3τ0 cos 3τ1 term) value of −73 to −139 cm−1 is 25% smaller and of the opposite sign of the experimental value of 333±22 cm−1. These theoretical and spectroscopy results are compared to similar quantities of some corresponding molecules.  相似文献   

5.
The infrared spectra (3500 to 40 cm−1) of gaseous and solid and the Raman spectra (3500 to 30 cm−1) of liquid and solid 1-fluorosilacyclobutane, c-C3H6SiFH, have been obtained. Both the axial and equatorial conformers with respect to the fluorine atom have been identified in the fluid phases. Variable temperature (−105 to −150 °C) studies of the infrared spectra of the sample dissolved in liquid krypton have been carried out. From these data, the enthalpy difference has been determined to be 282 ± 27 cm−1 (3.37 ± 0.32 kJ/mol), with the equatorial conformer the more stable form and the only conformer remaining in the annealed solid. At ambient temperature there is approximately 21 ± 2% of the axial conformer present in the vapor phase. From isolated Si–H stretching frequencies the Si–H (r0) distances are calculated to be 1.484 and 1.485 Å for the equatorial and axial conformers, respectively. Structural parameters have been predicted from MP2/6-311 + G(d,p) ab initio calculations and the adjusted r0 parameters for both conformers were obtained from a combination of the ab initio predicted values and the six previously reported microwave rotational constants. Along with the Si–H bond distance, the Si–C, and C–C distances of 1.865(5), and 1.571(5) Å, respectively, for the equatorial conformer are significantly different from the values for these parameters previously reported from an election diffraction study. Both the SiC and CC distances and the SiF distance are longer by 0.002 and 0.004 Å, respectively, for the axial conformer. Structural parameters have also been obtained for silacyclobutane, c-C3H6SiH2 and ethylsilylfluoride, CH3CH2SiH2F, from combined ab initio predicted values and previously reported rotational constants. Several of these newly determined parameters are significantly different from those previously reported for both molecules. Complete equilibrium geometries, conformational stabilities, harmonic force fields, infrared intensities, Raman activities, and depolarization ratios have been determined for both rotamers by ab initio calculations employing the 6-31G(d) basis set at the level of Moller–Plesset (MP) to second order. A complete vibrational assignment supported by normal coordinate calculations is proposed for the equatorial conformer, and several of the fundamentals of the axial conformer have also been identified. The results are discussed and compared to corresponding quantities for some similar molecules.  相似文献   

6.
The infrared spectra of gaseous and variable-temperature liquid xenon solutions of pyrrolidine have been recorded. The enthalpy difference has been determined to be 109 ± 11 cm(-1) (1.30 ± 0.13 kJ mol(-1)) with the envelope-equatorial conformer more stable than the twist form with 37 ± 3% present at ambient temperature. Ab initio calculations utilizing various basis sets up to MP2(full)/aug-cc-pVTZ have been used to predict the conformational stabilities, energy at the equatorial-axial saddle point, and barriers to planarity. From previously reported microwave rotational constants along with MP2(full)/6-311+G(d,p) predicted structural values, adjusted r(0) parameters have been obtained for both conformers. Heavy atom distances (?) of equatorial[twist] conformer are as follows: N(1)-C(2) = 1.469(3)[1.476(3)], N(1)-C(3) = 1.469(3)[1.479(3)], C(2)-C(4) = 1.541(3)[1.556(3)], C(3)-C(5) = 1.541(3)[1.544(3)], C(4)-C(5) = 1.556(3)[1.543(3)]; and angles (deg)∠N(1)C(2)C(4) = 102.5(5)[107.6(5)], ∠N(1)C(3)C(5) = 102.5(5)[105.4(5)], ∠C(2)C(4)C(5) = 104.3(5)[104.6(5)], ∠C(3)C(5)C(4) = 104.3(5)[103.7(5)], ∠C(2)N(1)C(3) = 104.1(5)[103.9(5)], τC(2)C(4)C(5)C(3) = 0.0(5)[13.5(5)]. A complete vibrational assignment is proposed for both conformers.  相似文献   

7.
Infrared and Raman spectra (3500-60 cm−1) of gas and/or liquid and solid 1-chloro-1-silacyclopentane (c-C4H8SiClH) have been recorded and the vibrational data indicate the presence of a single conformer with no symmetry which is consistent with the twisted form. Ab initio calculations with a variety of basis sets up to MP2(full)/aug-cc-pVTZ predict the envelope-axial and envelope-equatorial conformers are saddle points with nearly the same energies but much lower in energy than the planar conformer. Density functional theory calculations by the B3LYP method predicts slightly lower energies for the two envelope forms and considerably lower for the planar form. By utilizing the MP2(full)/6-31G(d) calculations the force constants, frequencies, infrared intensities, band contours, Raman activities, and depolarization values have been obtained to support the vibrational assignment. Estimated r0 structural parameters have been obtained from adjusted MP2(full)/6-311 + G(d, p) calculations. These experimental and theoretical results are compared to the corresponding quantities of some other five-membered rings.  相似文献   

8.
The far-infrared spectrum of gaseous fluoromethyl methyl ether, FCH2OCH3, along with three of the deuterium isotopes, has been recorded at a resolution of 0.10 cm–1 in the 350 to 50 cm–1 region. The fundamental asymmetric torsional and methyl torsional modes are extensively mixed and have been observed at 182 and 132 cm–1, respectively, for the stablegauche conformer with the lower frequency band having several excited states falling to lower frequency. An estimate is given for the potential function governing the asymmetric rotation. On the basis of a one-dimensional model the barrier to internal rotation of the methyl moiety is determined to be 527±9 cm–1 (1.51±0.03 kcal/mol). A complete assignment of the vibrational fundamentals for all four isotopic species observed from the infrared (3500 to 50 cm–1) spectra of the gas and solid and from the Raman (3200 to 10 cm–1) spectra of the gas, liquid, and solid is proposed. No evidence could be found in any of the spectra for the high-energytrans conformer. All of these data are compared to the corresponding quantities obtained from ab initio Hartree-Fock gradient calculations employing the 3-21G and 6-31G* basis sets along with the 6-31G* basis set with electron correlation at the MP2 level. Additionally, completer 0 geometries have been determined from the previously reported microwave data and carbon-hydrogen distances determined from infrared studies. The heavy-atom structural parameters (distances in Å, angles in degrees) arer(C1-F) = 1.395 ± 0.005;r(C1-O) = 1.368 ± 0.007;r(C2-O) = 1.426 ±0.003; FC1O = 111.33 ± 0.25; C1OC2 = 113.50 ± 0.18 and dih FC1OC2 = 69.12 ± 0.26. All of these results are discussed and compared with the corresponding quantities obtained for some similar molecules.  相似文献   

9.
The infrared spectra (3500–50 cm−1) of the gas and solid and the Raman spectra (3500–50 cm−1) of the liquid and solid have been recorded for 2-hexyne, CH3–CC–CH2CH2CH3. Variable temperature studies of the infrared spectrum (3500–400 cm−1) of 2-hexyne dissolved in liquid krypton have also been recorded. Utilizing four anti/gauche conformer pairs, the anti(trans) conformer is found to be the lower energy form with an enthalpy difference of 74±8 cm−1 (0.88±0.10 kJ/mol) determined from krypton solutions over the temperature range −105 to −150 °C. At room temperature it is estimated that there is 42% of the anti conformer present. Equilibrium geometries and energies of the two conformers have been determined by ab initio (HF and MP2) and hybrid DFT (B3LYP) methods using a number of basis sets. Only the HF and DFT methods predict the anti conformer as the more stable form as found experimentally. A vibrational assignment is proposed based on the force constants, relative intensities, depolarization ratios from the ab initio and DFT calculations and on rotational band contours obtained using the calculated equilibrium geometries. From calculated energies it is shown that the CH3 group exhibits almost completely free rotation which is in agreement with the observation of sub-band structure for the degenerate methyl vibrations from which values of the Coriolis coupling constants, ζ, have been determined. The results are compared to similar properties of some corresponding molecules.  相似文献   

10.
The infrared spectra (3200–30 cm−1) of gaseous and solid ethyl fluorosilane, CH3CH2SiH2F, have been recorded. Additionally, the Raman spectra (3200–30 cm−1) of the liquid and solid have been recorded and quantitative depolarization values obtained. Both the gauche and trans conformers have been identified in the fluid phases but only the gauche conformer remains in the solid. Variable temperature (−105 to −150°C) studies of the infrared spectra of the sample dissolved in liquid krypton have been carried out. From these data, the enthalpy difference has been determined to be 54±16 cm−1 (646±191 J/mol) with the gauche conformer the more stable form. This is consistent with the predictions from ab initio, MP2/6-311+G(2d,2p), calculation as well as those with smaller basis sets with full electron correlations. A complete vibrational assignment is proposed for both the trans and gauche conformers based on infrared band contours, relative intensities, depolarization values, and group frequencies, which are supported by normal-coordinate calculations utilizing the force constants from MP2/6-31G(d) ab initio calculations. Complete equilibrium geometries have been determined for both rotamers by ab initio calculations employing a variety of basis sets up to 6-311+G(2d,2p) at levels of restricted Hartree–Fock (RHF) and/or Moller Plesset to the second order (MP2) with full electron correlation. The adjusted r0 parameters have been obtained for both conformers from a combination of the previously reported rotational constants with ab initio predicted values. All results are compared to similar quantities of some corresponding molecules.  相似文献   

11.
The infrared spectra (3500–40 cm−1) of gaseous and solid and the Raman spectra (3500–30 cm−1) of liquid and solid 1-chlorosilacyclobutane, c-C3H6SiClH, have been obtained. Both the axial and equatorial conformers with respect to the chlorine atom have been identified in the fluid phases. Variable temperature (−105 to −150°C) studies of the infrared spectra of the sample dissolved in liquid krypton have been carried out. From these data, the enthalpy difference has been determined to be 211±17 cm−1 (2.53±0.21 kJ/mol), with the equatorial conformer being the more stable form and the only conformer remaining in the annealed solid. At ambient temperatures, approximately 26% of the axial conformers are present in the vapor phase. A complete vibrational assignment is proposed for the equatorial conformer, and many of the fundamentals of the axial conformers have also been identified. The vibrational assignments are supported by normal coordinate calculations utilizing ab initio force constants. Complete equilibrium geometries, conformational stabilities, harmonic force fields, infrared intensities, Raman activities, and depolarization ratios have been determined for both rotamers by ab initio calculations employing the 6-31G(d) basis set at the levels of restricted Hartree–Fock (RHF) and/or Moller–Plesset (MP) to second order. Structural parameters have also been obtained using MP2/6-311+G(d,p) ab initio calculations. The r0 parameters for both conformers are obtained from a combination of the ab initio predicted values and the twelve previously reported microwave rotational constants. The results are discussed and compared to those obtained for some similar molecules.  相似文献   

12.
Variable temperature (-55 to -100 degrees C) studies of the infrared spectra (4000-400 cm(-1)) of cyclobutanol, c-C4H7OH dissolved in liquid xenon have been carried out. The infrared spectrum (4000-100 cm(-1)) of the gas has also been recorded. From these data two of the four possible stable conformers have been confidently identified and their order of stabilities has been experimentally determined where the first indicator is for the position of attachment of the hydroxyl group on the bent cyclobutyl ring (Eq=equatorial or Ax=axial) and the second one (t=trans, g=gauche) is the relative position of the hydroxyl rotor, i.e. rotation around the ring C-O bond. The enthalpy difference between the most stable Eq-t conformer and the second most stable rotamer, Eq-g, has been determined to be 200+/-50 cm(-1) (2.39+/-0.60 kJ/mol). This experimentally determined order is consistent with the order of stability predicted by ab initio calculations Eq-t>Eq-g>Ax-g>Ax-t. Evidence was obtained for the third conformer Ax-g which is predicted by ab initio calculations to be less stable by more than 650cm(-1) than the Eq-t form. The percentage of each conformer at ambient temperature is estimated to be Eq-t (50%), Eq-g (47%) and Ax-g (3%). The conformational stabilities, harmonic force fields, infrared intensities, Raman activities, depolarization ratios and vibrational frequencies have been obtained for all of the conformers from MP2(full)/6-31G(d) ab initio calculations. The optimized geometries and conformational stabilities have been obtained from ab initio calculations utilizing several different basis sets up to MP2(full)/aug-cc-pVTZ and from density functional theory calculations by the B3LYP method. By utilizing previously reported microwave rotational constants for the Eq-t conformer combined with ab initio MP2(full)/6-311+G(d,p) predicted structural values, adjusted r0 parameters have been obtained. The determined heavy atom structural parameters for the Eq-t conformer are: the distances C1-C4=1.547(5) angstroms, C4-C6=1.552(5)angstroms, C-O=1.416(5) angstroms and angles angleC6C4C1=86.6(5) degrees , angleC4C1C5=88.9(5) degrees and angleC6C5C1C4=22.8(5) degrees . The results are discussed and compared to the corresponding properties of some similar molecules.  相似文献   

13.
The infrared (3500–40 cm−1) spectra of gaseous and solid 1-fluoro-1-methylsilacyclobutane, c-C3H6SiF(CH3), have been recorded. Additionally, the Raman spectrum (3500–30 cm−1) of the liquid has been recorded and quantitative depolarization values have been obtained. Both the axial and equatorial (with respect to the methyl group) conformers have been identified in the fluid phases. Variable temperature (−55–−100°C) studies of the infrared spectra of the sample dissolved in liquid xenon have been carried out. From these data, the enthalpy difference has been determined to be 267±10 cm−1 (3.19±0.12 kJ mol−1), with the axial conformer being the more stable form and the only conformer remaining in the polycrystalline solid. A complete vibrational assignment is proposed for the axial conformer and many of the fundamentals for the equatorial conformer have also been identified. The vibrational assignments are supported by normal coordinate calculations utilizing ab initio force constants. Complete equilibrium geometries have been determined for both rotamers by ab initio calculations employing the 6-31G* and 6-311++G** basis sets at the levels of restricted Hartree–Fock (RHF) and/or Moller–Plesset (MP) to second order. The results are discussed and compared to those obtained for some similar molecules.  相似文献   

14.
Durig  James R.  Shen  Shiyu 《Structural chemistry》2003,14(2):199-210
Variable temperature (–100 to –150°C) studies of the infrared spectra (3500–400 cm–1) of propenoyl bromide, CH2=CHCBrO, dissolved in liquid krypton, have been carried out. Utilizing six different conformer pairs, an enthalpy difference of 204 ± 20 cm–1 (2.44 ± 0.24 kJ/mol) was obtained, with the anti conformer (carbonyl bond trans to C=C bond) the more stable form. At ambient temperature, there is approximately 28 ± 2% of the syn conformer present. The anti conformer also remains in the infrared and Raman spectra of the polycrystalline solid. The optimal geometries, conformational stabilities, harmonic force fields, infrared intensities, Raman activities, depolarization ratios, and vibrational frequencies, are reported for both conformers from MP2/6-31G(d) ab initio calculations. The potential function governing the conformational interchange has been obtained from the MP2/6-31G(d) ab initio calculations. The conformational stabilities were calculated from a variety of basis sets and at the highest level of calculations, MP2/6-311 + (2df,2pd), the anti conformer is predicted to be more stable by 178 cm–1, which is in excellent agreement with the experimental results. The r 0 adjusted structural parameters have been obtained for propenoyl fluoride and chloride from a combination of the previously reported microwave rotational constants and ab initio predicted parameters. Several of the parameters for the chloride are significantly different than those proposed from an electron diffraction investigation. The results of these spectroscopic, structural, and theoretical studies are discussed and compared to the corresponding results for some similar molecules.  相似文献   

15.
Variable temperature (-115 to -155 degrees C) studies of the infrared spectra (3200-400 cm-1) of 4-fluoro-1-butene, CH2=CHCH2CH2F, dissolved in liquid krypton have been carried out. The infrared spectra of the gas and solid as well as the Raman spectra of the gas, liquid, and solid have also been recorded from 3200 to 100 cm-1. From these data, an enthalpy difference of 72 +/- 5 cm-1 (0.86 +/- 0.06 kJ x mol-1) has been determined between the most stable skew-gauche II conformer (the first designation refers to the position of the CH2F group relative to the double bond, and the second designation refers to the relative positions of the fluorine atom to the C-C(=C) bond) and the second most stable skew-trans form. The third most stable conformer is the skew-gauche I with an enthalpy difference of 100 +/- 7 cm-1 (1.20 +/- 0.08 kJ x mol-1) to the most stable form. Larger enthalpy values of 251 +/- 12 cm-1 (3.00 +/- 0.14 kJ x mol-1) and 268 +/- 17 cm-1 (3.21 +/- 0.20 kJ x mol-1) were obtained for the cis-trans and cis-gauche conformers, respectively. From these data and the relative statistical weights of one for the cis-trans conformer and two for all other forms, the following conformer percentages are calculated at 298 K: 36.4 +/- 0.9% skew-gauche II, 25.7 +/- 0.1% skew-trans, 22.5 +/- 0.2% skew-gauche I, 10.0 +/- 0.6% cis-gauche, and 5.4 +/- 0.2% cis-trans. The potential surface describing the conformational interchange has been analyzed and the corresponding two-dimensional Fourier coefficients were obtained. Nearly complete vibrational assignments for the three most stable conformers are proposed and some fundamentals for the cis-trans and the cis-gauche conformers have been identified. The structural parameters, dipole moments, conformational stability, vibrational frequencies, infrared, and Raman intensities have been predicted from ab initio calculations and compared to the experimental values when applicable. The adjusted r0 structural parameters have been determined by combining the ab initio predicted parameters with previously reported rotational constants from the microwave data. These experimental and theoretical results are compared to the corresponding quantities of some similar molecules.  相似文献   

16.
The Raman (3500-30 cm−1) spectra of liquid and solid and the infrared (3500-40 cm−1) spectra of gaseous and solid 3-methyl-3-butenenitrile, CH2C(CH3)CH2CN, have been recorded. Both cis and gauche conformers have been identified in the fluid phases but only the cis form remains in the solid. Variable temperature (−55 to −100 °C) studies of the infrared spectra of the sample dissolved in liquid xenon have been carried out. From these data, the enthalpy difference has been determined to be 163±16 cm−1 (1.20±0.19 kJ mol−1), with the cis conformer the more stable rotamer. It is estimated that there is 48±2% of the gauche conformer present at  25°C. A complete vibrational assignment is proposed for the cis conformer based on infrared band contours, relative intensities, depolarization ratios and group frequencies. Several of the fundamentals for the gauche conformer have also been identified. The vibrational assignments are supported by normal coordinate calculations utilizing ab initio force constants. Complete equilibrium geometries have been obtained for both rotamers by ab initio calculations employing the 6-31G(d), 6-311G(d,p), 6-311+G(d,p) and 6-311+G(2d,2p) basis sets at the levels of restricted Hartree-Fock (HF) and/or Møller-Plesset perturbation theory to the second order (MP2). Only with the 6-311G(2d,2p) and 6-311G(2df,2pd) basis sets with or without diffuse functions is the cis conformer predicted to be more stable than the gauche form. The potential energy terms for the conformational interchange have been obtained at the MP2(full)/6-311+G(2d,2p) level, and compared to those obtained from the experimental data. The results are discussed and compared to the corresponding quantities obtained for some similar molecules.  相似文献   

17.
The far-infrared spectra (350–35 cm–1) of gaseous ethyl methyl ether-d 0 and ethyl methyl-d 3-ether have been recorded at a resolution of 0.10 cm–1. For the d 0 species, the fundamental asymmetric torsion of the more stable trans conformer (two methyl moieties are trans to one another) has been observed at 115.40 cm–1 with four upper state transitions falling to lower frequency, whereas, for the gauche form, it has been observed at 93.56 cm–1 with two excited states falling to lower frequency. the corresponding series for the d 3 species start from 106.00 and 87.10 cm–1, respectively. From these data, the asymmetric torsional potential coefficients for the d 0 species have been determined to be: V 1 = 572 ± 30; V 2 = 85 ± 8; V 3 = 619 ± 30; V 4 = 175 ± 18, and V 6 = –28 ± 3 cm–1. The trans to gauche and gauche to gauche barriers were calculated to be 958 cm–1 (11.5 kJ/mol) and 631 cm–1 (7.55 kJ/mol), respectively, with an energy difference of 550 ± 6 cm–1 (6.58 ± 0.07 kJ/mol). Utilizing three conformer pairs, variable temperature studies (–105 to –150°C) of the infrared spectra of the d 0 sample dissolved in liquid krypton gave an enthalpy difference of 547 ± 28 cm–1 (6.54 ± 0.33 kJ/mol) with the trans conformer the more stable rotamer. It is estimated that there is only 4% of the gauche conformer present at ambient temperatures. The structural parameters, conformational stabilities, barriers to internal rotation, and fundamental vibrational frequencies, which have been determined experimentally, are compared to those obtained from ab initio gradient predictions from RHF/6-31G* and with full electron correlation at the MP2 level with three different basis sets. The adjusted r 0 structural parameters have been obtained for the trans conformer from combined ab initio MP2/6-311+G** predictions and previously reported microwave rotational constants. The reported distances should be accurate to 0.003 Å and the angles to 0.5°. These results are compared to the corresponding quantities obtained for some similar molecules.  相似文献   

18.
Variable temperature (−55 to −135°C) studies of the infrared spectra (3500–400 cm−1) of 1-bromo-2-fluoroethane, BrCH2CH2F, dissolved in liquid krypton and xenon have been recorded. From these data, the enthalpy difference has been determined to be 108±9 cm−1 (1.296±0.113 kJ/mol) and 112±8 cm−1 (1.346±0.098 kJ/mol) from the krypton and xenon solutions, respectively, with the trans conformer the more stable rotamer. Complete vibrational assignments are presented for both conformers which are consistent with the predicted frequencies obtained from the ab initio MP2/6-31G* calculations. The optimized geometries, conformational stabilities, harmonic force fields, infrared intensities, Raman activities, and depolarization ratios have been obtained from RHF/6-31G* and/or MP2/6-31G* ab initio calculations. These quantities are compared to the corresponding experimental quantities when appropriate. Structural parameters and conformational stability have also been obtained from MP2/6-311+G** calculations. Combining the ab initio predicted structural parameters with the microwave rotational constants, ro parameters have been obtained for the gauche conformer.  相似文献   

19.
Variable temperature studies of the infrared spectra (3500–400 cm−1) of 1-pentyne, CH3CH2CH2CCH, dissolved in liquid xenon (−55 to −100°C) and liquid krypton (−105 to −150°C) have been recorded. These data indicate that the anti (methyl group trans to the acetylenic group) and gauche conformers have relative concentrations that vary with the temperature, i.e. enthalpy nonzero. Utilizing seven sets of conformer pairs for the xenon solution and ten sets of conformer pairs for the krypton solution, the enthalpy difference has been determined to be 50±6 cm−1 (0.60±0.07 kJ/mol) and 45±4 cm−1 (0.54±0.05 kJ/mol), respectively, with the anti conformer the more stable form. Because of two equivalent gauche forms, this conformer is estimated to be in higher abundance at 61±1% in the xenon solution and 62±1% in the krypton solution. Optimized geometries and conformational stabilities have been obtained from ab initio calculations with basis sets 6-31G(d), 6-311+G(d,p), 6-311+G(2d,2p) and 6-311+G(2df,2pd) with full electron correlation by the perturbation method to second order (MP2). All of the calculations predict the gauche rotamer to be the more stable form with a high value of 181 cm−1 from the MP2/6-311+G(d,p) calculations and a low value of 107 cm−1 from the MP2/6-311+G(2d,2p) calculation. The ro adjusted structural parameters have been obtained from a combination of the microwave rotational constants and ab initio predicted parameters. The values are compared to the recently reported values from an electron diffraction study where the value for the CC bond distance appears to be too long. The results are discussed and the conformational stability is compared to those obtained for some similar molecules.  相似文献   

20.
Variable temperature (-55--100 degrees C) studies of the infrared spectra (3500-400 cm(-1)) of ethylphosphine-borane, CH3CH2PH2BH3, and ethylphosphine-borane-d5 dissolved in liquid xenon have been recorded. From these data, the enthalpy difference has been determined to be 86 +/- 8 cm(-1) (1.03 +/- 0.10 kJ/mol), with the trans conformer the more stable rotamer. Complete vibrational assignments are presented for both conformers, which are consistent with the predicted frequencies obtained from the ab initio MP2/6-31G(d) calculations. The optimized geometries, conformational stabilities, harmonic force fields, infrared intensities, Raman activities, and depolarization ratios have been obtained from RHF/6-31G(d) and/or MP2/6-31G(d) ab initio calculations. These quantities are compared to the corresponding experimental quantities when appropriate as well as with some corresponding results for some similar molecules. The r0 structural parameters have been obtained from a combination of the previously reported microwave rotational constants and ab initio predicted parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号