首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
为了研究有机多层阱结构中光谱蓝移的原因,制备了以N,N′-Di-[(1-naphthalenyl)-N,N′-diphenyl]-(1,1′-biphenyl)-4,4′-diamine (NPB) 为垒层和以Tris-(8-quinolinolato)aluminum(Alq3) 为阱层的有机多层阱结构器件.利用光致发光的方法,对具有不同周期及不同阱层厚度的有机多层阱结构器件进行研究.分析认为有机多层阱结构中的光谱蓝移是由于光谱重叠造成的,而并非量子尺寸效应或激子限制效应.  相似文献   

2.
为了研究有机多层阱结构中光谱蓝移的原因,制备了以N,N′-Di-[(1-naphthalenyl)-N,N′-diphenyl]-(1,1′-biphenyl)-4,4′-diamine (NPB) 为垒层和以Tris-(8-quinolinolato)aluminum(Alq3) 为阱层的有机多层阱结构器件.利用光致发光的方法,对具有不同周期及不同阱层厚度的有机多层阱结构器件进行研究.分析认为有机多层阱结构中的光谱蓝移是由于光谱重叠造成的,而并非量子尺寸效应或激子限制效应.  相似文献   

3.
具有穿插界面结构的高效绿光有机电致磷光器件   总被引:1,自引:0,他引:1       下载免费PDF全文
以传统有机电致磷光器件ITO/NPB/CBP∶Ir(ppy)3/BAlq/Alq3/LiF/Al为研究对象,在NPB/CBP∶Ir(ppy)3、CBP∶Ir(ppy)3/BAlq及BAlq/Alq3界面处构造交互穿插结构。器件的光电性能测试表明:交互穿插结构一方面能够降低电流密度,减少高电流密度下磷光猝灭中心的形成;另一方面能增加载流子复合界面面积,从而分散界面三线态激子,降低三线态-三线态激子的猝灭。此外,界面凸起的存在还有利于器件的光耦合输出。实验结果表明:当穿插厚度为10 nm,器件的最大电流效率达到34.0 cd/A,与传统器件的电流效率18.7 cd/A相比,提高了55%。  相似文献   

4.
利用热蒸发的方法制备了有机量子阱发光器件和Alq3单层发光器件,其中NPB(N,N′-Di-[(lnaphthalenyl)-N,N′-diphenyl]-(1,1′-biphenyl)-4,4′-diamine)作垒层,Alq3(Tris-(8-quinolinolato) aluminum)作阱层,量子阱结构类似于无机半导体的Ⅱ型量子阱结构.实验发现有机量子阱发光器件结构中存在垒层向阱层的F(o)rster无辐射共振能量转移,具有良好的电流-电压特性,光谱的窄化及蓝移,并且光谱的蓝移程度随电压的增大而逐渐增强.  相似文献   

5.
有机电致发光器件的稳定性是其实用化面临的主要难题之一。为了研究有机/有机界面性质对有机电致发光器件稳定性的影响,采用溶液旋涂的NPB(NPBSC)作为器件的空穴传输层制备了两种异质结电致发光器件:ITO/NPBSC/Alq3/LiF/Al和ITO/NPBSC/NPB/Alq3/LiF/Al,对比研究了器件的发光性能和工作稳定性。研究结果表明:完全使用NPBSC作为空穴传输层的器件性能和稳定性都较差,这归因于不稳定的NPBSC/Alq3界面,在空气中旋涂制备NPB层时,空气中的水蒸气和氧气分子会粘附在空穴传输层表面,这样就会引起界面处Alq3分子的发光猝灭。插入10 nm真空蒸镀的NPB层可以显著地提高器件的发光性能和稳定性,10 nm的NPB层把污染界面与激子复合区界面分开,避免了水蒸气和氧气分子对Alq3分子的发光猝灭,器件的效率增加了1.15 cd/A,半衰期寿命提高了4倍。  相似文献   

6.
以磷光染料Ir(piq)2(acac)作为发光掺杂剂,掺入空穴传输性主体材料NPB中得到红色发光层,荧光材料TBP掺入到主体CBP中作为蓝色发光层,制备了结构为ITO/NPB/NPB:Ir(piq)2(acac)/CBP/CBP:TBPe/BCP/ALq/Mg:Ag的双发光层白色有机电致发光器件.其中ALq3、未掺杂的NPB和CBP及BCP层分别作为电子传输层、空穴传输层和激子阻挡层.实验中通过调节发光层厚度及Ir(piq)2关键词: 磷光 激子阻挡层 有机电致发光  相似文献   

7.
本文把同分异构体3,3’-Di(9H-carbazol-9-yl)biphenyl (m CBP)和4,4’-Bis(carbazol-9-yl)biphenyl (CBP)作为给体, PO-T2T作为受体,以质量比1∶1制备了两种激基复合物器件,并在不同温度和偏压下测量了器件的发光磁效应(magneto-electroluminescence, MEL).发现室温下m CBP为给体的器件,其MEL的低磁场部分表现出反向系间窜越(reverse intersystem crossing, RISC)过程,降温时该RISC转变为系间窜越(intersystem crossing, ISC)过程;而CBP为给体的器件则表现出ISC过程,且降温时ISC过程先减弱后增强.室温下两种器件MEL的高磁场部分都体现为三重态激子与电荷的猝灭,但在20 K下CBP为给体的器件还出现了三重态-三重态激子湮灭.两种完全相反的低磁场线型与m CBP和CBP不同的结构导致三重态激子能量的高低有关.低温下微观过程的改变是因为低温不利于RISC过程、ISC过程和能量损失等演化通道.此外,当m CBP:PO-T2T质...  相似文献   

8.
制备了一种结构为ITO/NPB/NPB:Ir(piq)2(acac)/CBP:TBPe/BAlq:rubrene/BAlq/Alq3/Mg:Ag的白色磷光有机电致发光器件.其中空穴传输型主体NPB掺杂磷光染料Ir(piq)2(acac)作为红色发光层,双载流子传输型主体4,4′-N,N′-dicarbazole-biphenyl (CBP)掺杂TBPe作为蓝色发光层,电子传输型主体材料BAlq掺杂rubrene作为绿色发光层.以上发光层夹于 关键词: 电致发光 磷光染料 异质结 白光  相似文献   

9.
量子阱结构对有机电致发光器件效率的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
朱海娜  徐征  赵谡玲  张福俊  孔超  闫光  龚伟 《物理学报》2010,59(11):8093-8097
实验中共制备了五种有机量子阱结构电致发光器件,分别对这五种量子阱结构器件的电致发光特性进行了研究,分析了量子阱结构的周期数和势垒层的厚度对器件电学性能的影响.实验结果表明适当周期数的量子阱结构器件的亮度和电流效率比传统的三层结构器件的要大,主要原因是量子阱结构对电子和空穴的限制作用,这种限制作用提高了电子和空穴在发光层中形成激子和复合的概率,从而提高了发光的亮度和效率.当改变阱结构器件中势阱层的厚度时,也会对器件的亮度和效率产生影响,采用适当的势阱层厚度能够提高器件的亮度和效率. 关键词: 量子阱结构 电致发光 电流效率 光谱  相似文献   

10.
制备了结构为ITO/MoO3(40 nm)/NPB(40 nm)/TCTA(10 nm)/CBP∶GIr1(14%)∶R-4B(2%)(20 nm) /间隔层(3 nm)/ CBP∶GIr1(14%)∶R-4B(2%)(10 nm)/BCP(10 nm)/Alq3(40 nm)/LiF(1 nm)/Al(100 nm) 的有机电致发光器件,间隔层分别为CBP,TCTA,TPBI和BCP,GIr1和R-4B分别为绿红磷光材料。通过加入不同间隔层来调控载流子和激子在发光层内的分布并研究了其对器件发光性能的影响。研究表明TCTA,TPBI和BCP分别作为间隔层的器件较CBP为间隔层的参考器件,电压为6 V时,电流效率分别高出59%,79%和93%,以BCP为间隔层的器件效率最高达到22.58 cd·A-1;TPBI和BCP为间隔层相对于以TCTA为间隔层的器件,在较高的电流密度下,效率滚降更小。分析原因TCTA间隔层较高的LUMO能级和三线态能量将电子和激子限制在较窄的复合区域,提高了载流子相遇形成激子的概率,在较高电流密度下猝灭也更严重;TPBI和BCP由于具有较高的HOMO能级和电子传输能力,拓宽了激子的复合区域。间隔层引起电子或空穴的累积,形成较高的空间电场,有利于发光层相应载流子的注入与传输。由于发光层掺杂方式为红绿共掺,器件均获得了较好的色坐标稳定性。  相似文献   

11.
陈苏杰  于军胜  文雯  蒋亚东 《物理学报》2011,60(3):37202-037202
采用N, N'-diphenyl-N, N'-bis(1-naphthyl-pheny1)-1, 1'-biphenyl-4, 4'-diamine (NPB):4, 4'-N, N'-dicarbazole-biphenyl (CBP) 掺杂体系为复合空穴传输层,制备了结构为indium-tin oxide (ITO)/NPB:CBP/CBP:bis iridium (acetylacetonate) /2, 9-dimethyl-4, 7-diphenyl-p 关键词: 有机电致发光器件(OLEDs) 复合空穴传输层 NPB:CBP 器件性能  相似文献   

12.
在Si/SiO2衬底上生长金属银作为阳极,4,4,4-tris(3-methylphenylpheny-lamino)-triphenylamine(m-MTDATA):MoOx/m-MTDATA/N,N-bis-(1-naphthyl)-N,N-diphenyl-1,1-biphenyl-4,4-diamine(NPB)作为空穴注入及传输层,发光层采用4,4-N,N-dicarbazole-biphenyl(CBP)掺杂磷光染料(1-(phenyl)isoquinoline)iridium(III) acetylanetonate(Ir(piq)2(acac))的结构,4,7-di-phenyl-1,10-phenanthroline(BPhen)作为空穴阻挡层及电子传输层,阴极为LiF(1 nm)/Al(2 nm)/Ag(20 nm)复合阴极结构.通过在光取出的复合阴极上方生长一层CBP光学覆盖层,有效地改善了复合阴极膜系的透射率,从而改善了顶发射结构的光学耦合输出特性,在提高器件的正向发光效率的同时还使色坐标往深红光区移动.并且生长光学覆盖层结构的器件角度依赖特性明显得到改善,这对于制作高显示质量的显示器件具有重要意义.在原有结构的基础上增加20 nm的NPB掺杂磷光染料Ir(piq)2(acac)作发光层,从而得到双发光层结构为NPB:Ir(piq)2(acac)(1%,20 nm)/CBP:Ir(piq)2(acac)(1%, 20 nm).由于NPB具有较高的空穴迁移率,避免了由于光学厚度的增加而引起器件工作电压的大幅升高,而双发光层的结构有利于增大激子复合区域,提高辐射复合几率,减少非辐射损耗,实现主客体之间高效的三线态能量传递,相对单发光层顶发射结构,双发光层结构不仅提高了器件的发光效率,而且改善了器件的色坐标.  相似文献   

13.
We used N,N′-bis-(1-naphthyl)-N,N′-1-diphenyl-1,1′-biphenyl-4,4′-diamine (NPB), 4,4′-N,N′-dicarbazole-biphenyl (CBP) and tris(8-hydroxyquinoline) aluminum (Alq3) to fabricate tri-layer electroluminescent (EL) device (device structure: ITO/NPB/CBP/Alq3/Al). In photoluminescence (PL) spectra of this device, the emission from NPB shifted to shorter wavelength accompanying with the decrease of its emission intensity and moreover the emission intensity of Alq3 increased relatively with the increase of reverse bias voltage. The blue-shifted emission and the decrease in emission intensity of NPB were attributed to the polarization and dissociation of NPB excitons under reverse bias voltage. The increase of emission intensity of Alq3 benefited from the recombination of electrons (produced by the dissociation of NPB exciton) and holes (injected from the Al cathode).  相似文献   

14.
Current-voltage (I–V) and electroluminescence (EL) characteristics of organic light-emitting devices with N,N’-Di-[(1-naphthalenyl)-N,N’-diphenyl]-(1,1’-biphenyl)-4,4’-diamine (NPB) of various thicknesses as the hole transport layer, and tris(8-hydroxyquinoline)aluminum (Alq3) selectively doped with 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran (DCM) as the electron transport layer, have been investigated. A trapped charge induced band bend model is proposed to explain the I–V characteristics. It is suggested that space charge changes the injection barrier and therefore influences the electron injection process in addition to the carrier transport process. Enhanced external quantum efficiency of the devices due to the electron blocking effect of an inserted NPB layer is observed. The optimal thickness of the NPB layer is experimentally determined to be 12±3 nm in doped devices, a value different from that for undoped devices, which is attributed to the electron trap effect of DCM molecules. This is consistent with the result that the proportion of Alq3 luminescence in the total electroluminescence (EL) spectra increases with NPB thickness up to 12 nm under a fixed bias. PACS 72.80.Le; 85.60.Jb  相似文献   

15.
The efficiency of organic light-emitting devices (OLEDs) based on N,N'-bis(1-naphthyl)-N,N'-diphenyl-N,1'-biphenyl-4,4'-diamine (NPB) (the hole transport layer) and tris(8-hydroxyquinoline) aluminum (Alq3) (both emission and electron transport layers) is improved remarkably by inserting a LiF interlayer into the hole transport layer. This thin LiF interlayer can effectively influence electrical performance and significantly improve the current efficiency of the device. A device with an optimum LiF layer thickness at the optimum position in NPB exhibits a maximum current efficiency of 5.96 cd/A at 215.79 mA/cm2, which is about 86% higher than that of an ordinary device (without a LiF interlayer, 3.2 cd/A). An explanation can be put forward that LiF in the NPB layer can block holes and balance the recombination of holes and electrons. The results may provide some valuable references for improving OLED current efficiency.  相似文献   

16.
Electroluminescence (EL) and photoluminescence (PL) have been studied on multi-layer organic light-emitting diode (OLED) devices based on phosphorescent platinum octaethyl porphine (PtOEP) molecule. A multi-layer OLED (called Pt5) which has 100% PtOEP without doping in host as the emitting layer is investigated and compared its EL and PL characteristics with those of the other OLEDs (Pt2 and Pt3) with emitting layer of PtOEP doped in 4,4′-N,N′-dicarbazole-biphenyl (CBP) host material. It is observed that Pt5 shows a lower EL efficiency than Pt2 and Pt3. Three broad EL bands are observed at 500, 527 and 570 nm in the multi-layer device in addition to red sharp EL band due to PtOEP in Pt5, while only the red PtOEP EL is observed in Pt2 and Pt3. The 500, 527 and 570 nm EL peaks arise from absorption of the broad 525 nm Alq3 emission band by PtOEP layer. The emission from the Alq3 electron-transport layer is caused by the carrier leakage from the hole-blocking BAlq layer. The intensity of red EL due to PtOEP is much weaker in Pt5 than in Pt2. Taking into account the result of PL, it is suggested that highly efficient energy transfer from CBP host to PtOEP guest occurs in Pt2 and Pt3, giving rise to higher PtOEP luminance, while concentration quenching occurs in PtOEP layer in Pt5.  相似文献   

17.
A novel phosphorescent organic white-light-emitting device (WOLED) with contiguration of ITO/NPB/CBP: TBPe:rubrene/Zn(BTZ)2:Ir(piq)2(acac)/Zn(BTZ)2/Mg:Ag is fabricated successfully, where the phosphorescent dye bis (1-(phenyl)isoquinoline) iridium (Ⅲ) acetylanetonate (Ir(piq)2 (acac)) doped into bis-(2-(2-hydroxyphenyl) benzothiazole)zinc (Zn(BTZ)2) (greenish-blue emitting material with electron transport character) as the red emitting layer, and fluorescent dye 2,5,8,11-tetra-tertbutylperylene (TBPe) and 5,6,11,12-tetraphenyl-naphthacene (rubrene) together doped into 4,4'-N,N'-dicarbazole-biphenyl (CBP) (ambipolar conductivity material) as the blue-orange emitting layer, respectively. The two emitting layers are sandwiched between the hole-transport layer N ,N'-biphenyl-N , N'-bis (1-naph thyl)-(1,1'-biphenyl)-4, 4 Cdiamine (NP B) and electron-transport layer (Zn(BTZ)2 ) The optimum device turns on at the driving voltage of 4.5 V. A maximum external quantum efficiency of 1.53%. and brightness 15000 cd/m^2 are presented. The best point of the Commission Internationale de 1'Eclairage (CIE) coordinates locates at (0.335, 0.338) at about 13 V. Moreover, we also discuss how to achieve the bright pure white light through optimizing the doping concentration of each dye from the viewpoint of energy transfer process.  相似文献   

18.
通过在主体材料上蒸镀一层荧光染料超薄层的方法,研究了有机小分子5,6,11,12-tetraphenyl-naphthacene(rubrene)薄层在器件中不同位置时,有机电致发光器件(OLED)的电致发光光谱及发光性能.实验发现当rubrene薄层位于NPB/AlQ界面处时,器件的发光几乎都来自rubrene的发光...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号