首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
压气机叶栅流场和气动性能的无粘流-边界层迭代计算   总被引:3,自引:0,他引:3  
本文给出一种计算压气机叶栅流场和气动性能的无粘流-边界层迭代方法.这种方法能够计算叶片后缘附近有紊流边界层分离的流动,考虑了尾迹对主流的位移效应.对一个高亚音速压气机叶栅的最小损失工况,计算得到的叶片型面M数分布、叶栅出口气流角、总压损失系数和试验值符合良好.  相似文献   

2.
压气机抽气级静叶吸力面抽气方式的研究   总被引:6,自引:0,他引:6  
本文提出了将压气机系统性抽气与改善流道内部边界层流动相结合的方法,以提高压气机抽气级的性能.以某多级轴流压气机为例,采用数值模拟的方式讨论了压气机静叶吸力面抽气的可行性.通过不同抽气流量下3个算例计算结果的比较分析,证明了通过静叶吸力面抽气改善叶片性能和流动状况是可行的.  相似文献   

3.
多级轴流压气机三维气动设计的一种快速方法   总被引:1,自引:0,他引:1  
本文提出了一种适用于多级压气机的快速三维数值气动设计方法,该方法的核心是应用一种快速网格生成技术和NS方程求解器之间不断的相互迭代,最终得到各叶片排的三维叶片造型。首先给定流量,压比和压气机子午通道的几何形状。在初始设计阶段通过计算得到各叶片排沿叶高周向平均的进出口气流角分布,并把其作为计算的目标参数。然后通过网格生成和NS求解之间的迭代,不断调整目标参数,直到计算收敛。应用本方法设计了一台具有三个重复级的实验用轴流低速压气机。  相似文献   

4.
本文在S_2/S_1流面准三元迭代的基础上,建立了S_1流面和S_2流面的主流-边界层迭代汁算方法,以及S_2/S_1流面之间的无粘-粘性准三元迭代系统,首次完成了跨声速压气机流场的中心S_2流面和六个S_1流面之间的主流-边界层迭代计算,得到了无粘-粘性准三元迭代解.本文为进行跨声速压气机流场无粘-粘性准三元迭代提供了工程实用的计算方法,扩大了两类流面理论在叶轮机械粘性流动计算中的应用.  相似文献   

5.
本文基于准正交流线曲率法推导了适用于多级轴流压气机及离心压气机的压力梯度控制方程,并引入不同压气机经验模型,发展一种新型流线曲率法通流计算方法。基于预测方法,计算了亚/跨音速轴流压气机和带无叶/叶片扩压器离心压气机的通流特性,并与实验或三维CFD模拟结果进行了对比.结果表明,本文发展的流线曲率法通流预测结果同实验或CFD结果吻合度较高,这验证了该方法的合理性及所采用经验模型的准确性,因而其能快速、有效地评估多级轴流压气机及离心压气机通流特性.  相似文献   

6.
高负荷轴流压气机内部流动复杂,气动性能预测难度大。本文介绍了作者开发的一套适用于高负荷轴流压气机性能预测的通流计算程序。程序采用流线曲率法,基于对压气机内部流动规律的深刻认识,结合实际工程经验,建立了对于损失、落后角等的预测模型,以及失速和掺混模型。通过对NASA的跨音转子Rotor 1B、PW三级机组3S1、GE公司E~3机组等多台有代表性机组进行计算,并将计算结果与试验数据进行对比,验证了本通流程序的可靠性。结果表明,本程序是高负荷轴流压气机性能分析预测的有效工具,具有一定工程应用价值。  相似文献   

7.
考虑粘性及展向掺混的轴流和离心组合压气机流动分析   总被引:1,自引:0,他引:1  
本文研究建立了具有复杂流道形状的一体化轴流和离心组合压气机内部流动的数值计算方法,考虑到湍流扩散和粘性掺混,对不同类型的组合压气机内部流场进行了计算,根据计算结果详细分析了压气机的流动特性和气动性能,为建立先进的轴流和离心组合压气机气动设计体系,提供了工程实用的计算机程序和设计分析方法。  相似文献   

8.
本文应用非正交曲线坐标,在叶轮机械转动叶片上建立了三维边界层的微分方程及其求解方法。对一个压气机转子叶片的压力面和吸力面上的三维边界层进行了计算,结果表明,与实验结果比较符合。  相似文献   

9.
对轴流压气机叶型流动损失和落后角模型进行了系统归纳与整理,并将其与逐排基元叶片模型相结合,建立了计算多级轴流压气机特性工程方法,并进一步将其与锦标赛式遗传算法相结合,发展了一种新的多级轴流压气机变几何扩稳多目标优化算法,并成功应用于某型8级轴流压气机扩稳分析,取得了明显成效。与单目标优化相比,多目标扩稳调节能明显改善压气机性能,其最大效率提高了近4个百分点,且静叶安装角调节范围也明显减小。  相似文献   

10.
本文对我所跨声速单级轴流压气机0.8和0.9设计转速下转子通道内及其上、下游的流场,进行了S_1、S_2两类流面迭代计算,分析了三元跨声速流场,并与使用双焦点激光测速仪的测量结果进行了比较。在分析计算中,以激光测量的出口绝对气流角分布,常规测量的出口滞止压力分布及通过扭矩测量值校正得到的转子效率为输入参数,进行了6轮迭代计算,得到了跨声流场的收敛解。计算结果与测量值较接近。  相似文献   

11.
本文自行设计了轴流压气机旋转进口畸变发生装置.基于M-G模型,建立了轴流压气机旋转畸变模型.采用数值模拟和实验测量相结合的方法研究了轴流压气机在发生旋转进口畸变情况下的失速过程.试图通过分析畸变扰动与旋转失速之间关联性来探索压气机失稳的触发机理.研究结果表明:在旋转畸变条件下,压气机旋转失速总是始发于畸变扰动位置.  相似文献   

12.
多级轴流压气机全工况特性计算   总被引:1,自引:0,他引:1  
本文使用三维粘性流动计算软件Fine/Numeca,对某十五级轴流压气机进行了内流流场和全工况特性的数值计算尝试。分析了该压气机在设计工况和非设计工况的性能,同时把整机计算结果和前七级叶片的计算结果进行了比较。计算结果表明,当计算的级数较少时,目前的软件和硬件平台可以比较合理地预测压气机的全工况特性;而当计算的级数较多时,准确的数值模拟仍需要更为准确的多级模型和数值方法。  相似文献   

13.
本文对某多级轴流压气机的两级内部流场进行了CFD数值模拟,通过计算结果和通流计算值对比,分析了多级轴流压气机的级间匹配特性,说明该两级压气机的总体匹配特性是合理的.但是,在两端壁附近也存在一些差异.通过对其内部流场的剖析发现,第11级静叶的吸力面两端和第12级动叶吸力面根部均存在一定程度的分离,文中解释了存在分离原因以及分离对压气机匹配特性的不利影响.  相似文献   

14.
本文推导建立了适于求解跨声速轴流式压气机转子中S_2流面正问题的全守恒型势函数方程,方程的求解采用人工密度的方法和一种新的Φ-ρ(Γ)迭代方法,能在S_2流面上自动捕获激波.用本方法编制的计算机程序对西德DFVLR单级跨声速轴流式压气机转子的一个最高效率点实验工况进行了验算,并将计算结果与实验结果作了比较。  相似文献   

15.
本文介绍进气畸变、第一级涡轮导向器面积及开车程序对涡喷发动机压气机特性及不稳定性态影响的试验结果及分析.试验在一台涡喷发动机上进行,发动机的轴流压气机共九级,第一级为跨音级.  相似文献   

16.
本文通过求解三维不可压N-S方程,对三级低速轴流压气机第一级的孤立转子进行数值模拟,在出口加上节流阀进行了非定常计算,得到了失速先兆的特性,并且与压气机失速实验进行了比较。结果表明,计算与实验的特性线符合较好,单转子三维计算与压气机三级实验中第一级转子在失速先兆和失速团的特性一致。并且数值失速过程中动叶通道内部动态压力的变化与实验结果也很接近。  相似文献   

17.
跨音速轴流压气机级三维粘性流场全工况数值模拟   总被引:4,自引:0,他引:4  
采用一种快速求解三维粘性流场的计算方法求解跨音速轴流压气机级内部流场及全工况特性。该方法以LU-SGS-GE隐式格式和MUSCL TVD迎风格式为基础,结合壁面函数方法和简单的混合长度湍流模型,对三维可压缩雷诺平均Navie-Stokes方程进行求解。叶列间参数的传递采用混合平面方法并应用了微机网络并行计算技术。计算得到了NASA 37号低展弦比、跨音速轴流压气机级70%设计转速下的全工况性能曲线,并重点分析了其中一些典型工况下的内部流场。计算与实验结果的对比表明此方法能快速得到三维粘性流场的流动特性且计算精度较高,可用来模拟跨音速轴流压气机级内的全工况三维粘性流动。  相似文献   

18.
低速轴流压气机顶部微量喷气控制失速机理的数值模拟   总被引:6,自引:0,他引:6  
对低速轴流压气机的转子顶部进行微量喷气已经证明可以有效的抑制旋转失速,但通过实验研究其机理比较困难。本文对该低速轴流压气机的转子顶部进行微量喷气的失速起始过程进行了数值模拟,通过非定常流场和失速起始过程同未加喷气的情况进行比较,分析了微量喷气控制失速起始的机理。计算得到的特性线和失速点流量同实验较好吻合。  相似文献   

19.
本文介绍了GZ680增压器的离心压气机与轴流透平的气动热力学设计思想及特点。给出了压气机模化试验件的特性和增压器的平台试验结果。本增压器与柴油机进行了配机试验,显示出它的性能良好。文中给出了GZ680增压器与VTR501增压器配同一台柴油机时的性能比较。  相似文献   

20.
轴流压气机旋转失速先兆过程中-的频率阶跃现象   总被引:6,自引:2,他引:4  
本文采用小波分析数据处理方法,分别对高速和低速单级轴流压气机旋转失速先兆的发生和发展过程进行了分析,结果发现两台压气机的旋转失速先兆都是由脉冲开始,随之出现频率逐渐阶跃的低频波,当阶跃频率到达失速频率时压气机进入失速。在高速实验台上发现这一现象的出现沿叶片通道方向由后向前延迟。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号