首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A demonstrator of a pulse detonation combustion chamber of original design based on a cyclic deflagration- to-detonation transition in a mixture of separately fed liquid hydrocarbon fuel (propane–butane mixture) and air was developed. Fire tests of the demonstrator with an attached air duct, operating frequencies of up to 20 Hz, were performed on a thrust measurement bench. During the tests, wave processes in the gasdynamic duct were monitored and fuel consumption rate and thrust force were measured. At a frequency of operation of the demonstrator within 2–15 Hz, the fuel-based specific impulse was ~1000 s. It is shown that a partial filling of the gasdynamic duct with fuel mixture makes it possible to increase the specific impulse up to ~1100 s.  相似文献   

2.
Performance enhancement of a pulse detonation rocket engine   总被引:4,自引:0,他引:4  
Utilizing liquid kerosene as the fuel, oxygen as oxidizer and nitrogen as purge gas, a series of multi-cycle detonation experiments was conducted to improve the performance of pulse detonation rocket engine (PDRE). In order to improve the performance of the engine, it is crucial to develop an effective DDT enhancement device with less flow loss and higher survival in hostile detonation tube; therefore, three spiraling internal grooves were tested. The three spiraling internal grooves were semicircle, square and inversed-triangle grooves, respectively. The results showed that the spiraling internal groove can effectively enhance DDT and prolong the operation time of PDRE. The effect of groove shape on thrust enhancement of PDRE and the optimum length of spiraling groove were then investigated. To improve the detonability of liquid kerosene and prolong the durability of PDRE, experiments on the kerosene preheating based on active cooling were conducted. The results demonstrated that with the aid of fuel preheating, the detonation initiation time for liquid kerosene was noticeably reduced and a fully-developed detonation wave was achieved in the position away from igniter 4.67 times the diameter of the detonation tube. By adding the additive to liquid kerosene, the detonation initiation time from 0.75 ms decreased to 0.34 ms and the detonability of fuel was dramatically improved. Finally, experiments were conducted to investigate the effects of the operating frequency on the detonation parameters, the fill fraction and PDRE performance. The results indicated that detonation pressure and temperature vary with the operating frequency of PDRE, and the fill fraction has a significant influence on the specific impulse of PDRE. With the strategy of partial filling in detonation tube, the specific impulse can be remarkably enhanced.  相似文献   

3.
Numerical simulation of a methane-oxygen rotating detonation rocket engine   总被引:1,自引:0,他引:1  
The rotating detonation engine (RDE) is an important realization of pressure gain combustion for rocket applications. The RDE system is characterized by a highly unsteady flow field, with multiple reflected pressure waves following detonation and an entrainment of partially-burnt gases in the post-detonation region. While experimental efforts have provided macroscopic properties of RDE operation, limited accessibility for optical and flow-field diagnostic equipment constrain the understanding of mechanisms that lend to wave stability, controllability, and sustainability. To this end, high-fidelity numerical simulations of a methane-oxygen rotating detonation rocket engine (RDRE) with an impinging discrete injection scheme are performed to provide detailed insight into the detonation and mixing physics and anomalous behavior within the system. Two primary detonation waves reside at a standoff distance from the base of the channel, with peak detonation heat release at approximately 10 mm from the injection plane. The high plenum pressures and micro-nozzle injector geometry contribute to fairly stiff injectors that are minimally affected by the passing detonation wave. There is no large scale circulation observed in the reactant mixing region, and the fuel distribution is asymmetric with a rich mixture attached to the inner wall of the annulus. The detonation waves’ strengths spatially fluctuate, with large variations in local wave speed and flow compression. The flow field is characterized by parasitic combustion of the fresh reactant mixture as well as post-detonation deflagration of residual gases. By the exit plane of the RDRE, approximately 95.7% of the fuel has been consumed. In this work, a detailed statistical analysis of the interaction between mixing and detonation is presented. The results highlight the merit of high-fidelity numerical studies in investigating an RDRE system and the outcomes may be used to improve its performance.  相似文献   

4.
涡轮导向器对旋转爆轰波传播特性影响的实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为了研究涡轮导向器对旋转爆轰波传播特性的影响,以氢气为燃料,空气为氧化剂,在不同当量比下开展了实验研究.基于高频压力传感器及静态压力传感器的信号,详细分析了带涡轮导向器的旋转爆轰燃烧室的工作模式以及涡轮导向器对非均匀不稳定爆轰产物的影响.实验结果表明:在当量比较低时,爆轰燃烧室以快速爆燃模式工作;逐渐增大当量比,爆轰燃烧室开始以不稳定旋转爆轰模式工作;继续增大当量比,爆轰燃烧室以稳定旋转爆轰模式工作,且旋转爆轰波的传播速度和稳定性均随当量比的增大逐渐提高.爆轰波下游的斜激波与涡轮导向器相互作用,涡轮导向器对压力振荡的幅值具有明显的抑制作用,但对压力振荡频率的影响较小.随着当量比的增大,涡轮导向器上下游的静压均同时增大,经过涡轮导向器的作用,涡轮下游静压明显降低.  相似文献   

5.
The effect of reactant injection and mixing on detonation wave propagation is studied in a self-excited, optically-accessible linear detonation combustor operated with natural gas and oxygen. Fuel injection and mixing processes are captured with 100 kHz planar laser induced fluorescence (PLIF) measurements of acetone tracer injected into the fuel stream. Measurements are acquired at multiple orthogonal planes downstream of the reactant injection site to investigate the three-dimensional mixing field in the chamber. The fuel distribution field is correlated with simultaneously acquired OH* chemiluminescence measurements that provide a qualitative indication of heat release in the combustor. These measurements are used to provide quantitative information of the fuel injector recovery process and its impact on detonation wave structure across a range of equivalence ratios. While significant differences in the detonation wavefront are observed with change in equivalence ratio, the characterization of the fuel refill process into the chamber after the passage of the detonation wave highlights some key generalizable features. The time available for fuel recovery is consistently between 12 – 19% of the detonation wave period across an equivalence ratio range of 0.83 – 1.48. A linear correlation between injector recovery times and the ratio of the average detonation wave pressure amplitude relative to the pressure drop across the fuel injector is observed. Instantaneous and phase-averaged measurements of acetone-PLIF with the time-coincident OH* chemiluminescence images provide qualitative information of wave structure and injection dynamics along with quantification of fuel injector recovery, a key metric that drives combustor operation and performance. These measurements significantly enhance the ability to obtain detailed information on the intra- and inter-cycle spatiotemporal evolution of the reactant refill process and its coupled effects on the detonation wave structure and propagation.  相似文献   

6.
Oblique detonation waves stabilized in rectangular-cross-section bent tubes   总被引:1,自引:0,他引:1  
Oblique detonation waves, which are generated by a fundamental detonation phenomenon occurring in bent tubes, may be applied to fuel combustion in high-efficiency engines such as a pulse detonation engine (PDE) and a rotating detonation engine (RDE). The present study has experimentally demonstrated that steady-state oblique detonation waves propagated stably through rectangular-cross-section bent tubes by visualizing these waves using a high-speed camera and the shadowgraph method. The oblique detonation waves were stabilized under the conditions of high initial pressure and a large curvature radius of the inside wall of the rectangular-cross-section bent tube. The geometrical shapes of the stabilized oblique detonation waves were calculated, and the results of the calculation were in good agreement with those of our experiment. Moreover, it was experimentally shown that the critical condition under which steady-state oblique detonation waves can stably propagate through the rectangular-cross-section bent tubes was the curvature radius of the inside wall of the rectangular-cross-section bent tube equivalent to 14–40 times the cell width.  相似文献   

7.
Detonation combustors are considered promising alternatives to conventional combustors because they offer high thermal efficiency and fast combustion. However, especially for the rotating detonation combustor, the theoretical propulsive performance has not been confirmed in experimental studies because the highly unsteady flow field hinders the measurements process. To understand the involved phenomena in more detail, a reflective shuttling detonation combustor (RSDC) with a rectangular combustion chamber was developed. The interior of the chamber can easily be visualized owing to its two-dimensional quality. Utilizing the RSDC, several combustion tests with gaseous ethylene and oxygen were conducted for different values of mass flow rates and equivalence ratios. Combustion modes from the tests were classified into four types based on the fast Fourier transform (FFT) analysis of the luminous intensity of the CH* self-luminescence images captured by a high-speed camera and a band pass filter. Simultaneously, the theoretical total pressure of a conventional isobaric combustor was compared to the static pressure measured at the bottom of the RSDC chamber. For the detonation modes, the ratio between experimentally measured static pressure and the theoretical pressure varied depending on the location in the chamber owing to the distribution of the time-averaged static pressure. Furthermore, the pressure ratio of the detonation modes was up to 18% lower than that of the deflagration mode potentially owing to the flow velocity induced by the detonation waves.  相似文献   

8.
The results of simulation of detonation in a curved three-dimensional channel with a circular cross section of constant width blown through by a supersonic flow of a stoichiometric propane?air mixture are presented. In the bending zone, the channel wall was toroidal. The study was carried out within the framework of the one-stage combustion kinetics by the numerical method based on Godunov’s scheme in the original software package developed for multiparameter calculations and visualization of flows. The initiation of detonation occurs as a result of the formation of the shockwave configurations associated with the flow turn in the channel. Unsteady flow patterns are obtained, and their dependence on the parameters of the problem is investigated. The flow regime without detonation, the mode with the detonation wave emerging from the channel through the input cross section, and the mode with steady detonation are obtained.  相似文献   

9.
Shock wave and detonation propagation through U-bend tubes   总被引:4,自引:0,他引:4  
The objective of the research outlined in this paper is to provide experimental and computational data on initiation, propagation, and stability of gaseous fuel–air detonations in tubes with U-bends implying their use for design optimization of pulse detonation engines (PDEs). The experimental results with the U-bends of two curvatures indicate that, on the one hand, the U-bend of the tube promotes the shock-induced detonation initiation. On the other hand, the detonation wave propagating through the U-bend is subjected to complete decay or temporary attenuation followed by the complete recovery in the straight tube section downstream from the U-bend. Numerical simulation of the process reveals some salient features of transient phenomena in U-tubes.  相似文献   

10.
High-fidelity simulations of an experimental rotating detonation engine with an axial air inlet were conducted. The system operated with hydrogen as fuel at globally stoichiometric conditions. Instantaneous data showed that the detonation front is highly corrugated, and is considerably weaker than an ideal Chapman–Jouguet wave. Regions of deflagration are present ahead of the wave, caused by mixing with product gases from the previous cycle, as well as the injector recovery process. It is found that as the post-detonation high pressure flow expands, the injectors recover unsteadily, leading to a transient mixing process ahead of the next cycle. The resulting flow structure not only promotes mixing between product and reactant gases, but also increases likelihood of autoignition. These results show that the detonation process is very sensitive to injector design and the transient behavior during the detonation cycle. Phase-averaged statistics and conditionally averaged data are used to understand the overall reaction structure. Comparisons with available experimental data on this configuration show remarkable good agreement of the predicted reacting flow structure.  相似文献   

11.
A general concept of fast ignition by a hydrodynamic pulse is developed. The main statements of the concept are formulated having in mind the need to ignite the pre-compressed thermonuclear fuel of the inertial confinement fusion (ICF) target. Initially, combustion must be initiated inside the hydrodynamic flow during its action on the target. The conditions for propagating a self-sustaining thermonuclear-detonation wave from an igniter on the thermonuclear fuel of the ICF-target must be provided. For this, the deuterium–tritium (DT) igniter placed in the forward part of the hydrodynamic flow should not only be heated up to thermonuclear temperature, but also compressed to a density close to the density of the ICF-target fuel. It is shown that the detonation of the multilayer conical target (containing DT-ice and a heavy pusher) enables fast ignition of the ICF target fuel of 200–500 g/cm3 density at an implosion velocity of 300–500 km/s.  相似文献   

12.
The formation of NOx in hydrogen-fuelled pulse detonation engines (PDE) is investigated numerically. The computations are based on the axisymmetric Euler equations and a detailed combustion model consisting of 12 species and 27 reactions. A multi-level, dynamically adaptive grid is utilized, in order to resolve the structure of the detonation front. Computed NO concentrations are in good agreement with experimental measurements obtained at two operating frequencies and two equivalence ratios. Additional computations examine the effects of equivalence ratio and residence time on NOx formation at ambient conditions. The results indicate that NOx formation in PDEs is very high for near stoichiometric mixtures. NOx reduction requires use of lean or rich mixtures and the shortest possible detonation tube. NOx emissions for very lean or very rich mixtures are, however, fairly insensitive to residence time.  相似文献   

13.
The structure and dynamics of a hydrogen-air rotating detonation engine (RDE) are described based on 100-kHz laser absorption spectroscopy measurements of water temperature at four simultaneous locations within the detonation channel. The analysis focuses on the evolution of the flowfield over a 200 ms period for three separate air mass flow rate cases. Two-dimensional unwrapped visualizations of the temperatures show a flowfield structure containing regions with the detonation front, combustion products, oblique shock, and refilling reactants, qualitatively agreeing with previous simulations and experiments. A major conclusion is that water from the combustion products is measured throughout all space and time in the RDE, including near the injector, implying the presence of performance loss processes such as burning upstream of the detonation wave or the back recirculation of combustion products with fresh fuel–air. By analyzing the elevated temperatures of the reactants during the refill process, one estimation for the mass fraction of combustion products in the reactants is as high as 20–30% on average. This product mass fraction is found to be inversely proportional to the bulk air mass flow rate and decreases as time progresses. This indicates these non-ideal processes are more significant closer to RDE ignition for poorer performing operating conditions. For the largest air mass flow case, water temperatures near the nominally cold plenum conditions likely corroborate the presence of a recirculation region on the RDE inner body. Analysis of inter- and intra-cycle temperature dynamics further support non-ideal processes occurring behind the detonation wave and during the refill process. As a whole, the data indicates that the RDE performance is better as time progresses away from ignition or for higher air mass flow rates. These data are also important for comparison with numerical models.  相似文献   

14.
Yang Kang 《中国物理 B》2022,31(10):104701-104701
Acoustic characteristics of the detonation sound wave generated by a pulse detonation engine with an annular nozzle, including peak sound pressure, directivity, and A duration, are experimentally investigated while utilizing gasoline as fuel and oxygen-enriched air as oxidizer. Three annular nozzle geometries are evaluated by varying the ratio of inner cone diameter to detonation tube exit diameter from 0.36 to 0.68. The experimental results show that the annular nozzles have a significant effect on the acoustic characteristics of the detonation sound wave. The annular nozzles can amplify the peak sound pressure of the detonation sound wave at 90° while reducing it at 0° and 30°. The directivity angle of the detonation sound wave is changed by annular nozzles from 30° to 90°. The A duration of the detonation sound wave at 90° is also increased by the annular nozzles. These changes indicate that the annular nozzles have an important influence on the acoustic energy distribution of the detonation sound wave, which amplify the acoustic energy in a direction perpendicular to the tube axis and weaken it along the direction of the tube axis.  相似文献   

15.
A mathematical modeling of the chemical inhibition of the detonation of hydrogen-air mixtures is performed. It is demonstrated that a one-dimensional model of detonation based on a chain-branching mechanism of hydrogen combustion makes it possible to describe the main regularities of the effect of inhibitors on detonation. The calculation results, which are in good agreement with the available experimental data, show that inhibition causes a narrowing of the concentration limits of detonation and an increase in the critical diameter of detonation.  相似文献   

16.
The advancement of highly boosted internal combustion engines (ICEs) with high thermal efficiency is mainly constrained by knock and super-knock, respectively, due to the end gas autoignition and detonation development. The pressure wave propagation and reflection in a small confined space may strongly interact with local end gas autoignition, leading to combustion characteristics different from those in a large chamber or open space. The present study investigates the transient autoignition process in an iso-octane/air mixture inside a closed chamber under engine-relevant conditions. The emphasis is given to the assessment of effects of the pressure wave-wall reflection and the mechanism of extremely strong pressure oscillation typical for super-knock. It is found that the hot spot induced autoignition in a closed chamber can be greatly affected by shock/pressure wave reflection from the end wall. Different autoignition modes respectively from the hot spot and the end wall reflection are identified. A non-dimensional parameter quantifying the interplay between different length and time scales is introduced, which helps to identify different autoignition regimes including detonation development near the end wall. It is shown that detonation development from the hot spot may cause super-knock with devastating pressure oscillation. However, the detonation development from the end wall can hardly produce pressure oscillation strong enough for the super-knock. The obtained results provide a fundamental insight into the knocking mechanism in engines under highly boosted conditions.  相似文献   

17.
Pressure gain combustion in the form of continuous detonations can provide a significant increase in the efficiency of a variety of propulsion and energy conversion devices. In this regard, rotating detonation engines (RDEs) that utilize an azimuthally-moving detonation wave in annular systems are increasingly seen as a viable approach to realizing pressure gain combustion. However, practical RDEs that employ non-premixed fuel and oxidizer injection need to minimize losses through a number of mechanisms, including turbulence-induced shock-front variations, incomplete fuel-air mixing, and premature deflagration. In this study, a canonical stratified detonation configuration is used to understand the impact of preburning on detonation efficiency. It was found that heat release ahead of the detonation wave leads to weaker shock fronts, delayed combustion of partially-oxidized fuel-air mixture, and non-compact heat release. Furthermore, large variations in wave speeds were observed, which is consistent with wave behavior in full-scale RDEs. Peak pressures in the compression region or near triple points were considerably lower than the theoretically-predicted values for ideal detonations. Analysis of the detonation structure indicates that this deflagration process is parasitic in nature, reducing the detonation efficiency but also leading to heat release far behind the wave that cannot directly strengthen the shock wave. This parasitic combustion leads to commensal combustion (heat release far downstream of the wave), indicating that it is the root cause of combustion efficiency losses.  相似文献   

18.
The main thrust characteristics, such as thrust force, specific impulse, specific fuel consumption, and specific thrust, of a pulse detonation engine (PDE) with an air intake and nozzle in conditions of flight at a Mach number of 3 and various altitudes (from 8 to 28 km above sea level) are for the first time calculated with consideration given to the physicochemical characteristics of the oxidation and combustion of hydro-carbon fuel (propane), finite time of turbulent flame acceleration, and deflagration-to-detonation transition (DDT). In addition, a parametric analysis of the influence of the operation mode and design parameters of the PDE on its thrust characteristics in flight at a Mach number of 3 and an altitude of 16 km is performed, and the characteristics of engines with direct initiation of detonation and fast deflagration are compared. It is shown that a PDE of this design greatly exceeds an ideal ramjet engine in specific thrust, whereas regarding the specific impulse and specific fuel consumption, it is not inferior to the ideal ramjet.  相似文献   

19.
Jian-Xin Nie 《中国物理 B》2022,31(4):44703-044703
The combustion mechanism of aluminum particles in a detonation environment characterized by high temperature (in unit 103 K), high pressure (in unit GPa), and high-speed motion (in units km/s) was studied, and a combustion model of the aluminum particles in detonation environment was established. Based on this model, a combustion control equation for aluminum particles in detonation environment was obtained. It can be seen from the control equation that the burning time of aluminum particle is mainly affected by the particle size, system temperature, and diffusion coefficient. The calculation result shows that a higher system temperature, larger diffusion coefficient, and smaller particle size lead to a faster burn rate and shorter burning time for aluminum particles. After considering the particle size distribution characteristics of aluminum powder, the application of the combustion control equation was extended from single aluminum particles to nonuniform aluminum powder, and the calculated time corresponding to the peak burn rate of aluminum powder was in good agreement with the experimental electrical conductivity results. This equation can quantitatively describe the combustion behavior of aluminum powder in different detonation environments and provides technical means for quantitative calculation of the aluminum powder combustion process in detonation environment.  相似文献   

20.
The inverse problem for nonstationary powder combustion in a half-closed volume is considered. A transient was initiated by the abrupt change of the nozzle section. Experiments measured the time dependence of the pressure in a combustion chamber at various ratios of the initial and final nozzle sections. Comparison of the experimental data and the results from solving the direct problem allows one to solve the inverse problem, in other words, to obtain defined information of the characteristics of a combustion chamber, i.e., the characteristic time of chamber evacuation and the powder, i.e., the effective thermal diffusivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号