首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
陈含爽  侯中怀  张季谦  辛厚文 《中国物理 B》2010,19(5):50205-050205
We study evolutionary prisoner's dilemma game on adaptive networks where a population of players co-evolves with their interaction networks. During the co-evolution process, interacted players with opposite strategies either rewire the link between them with probability $p$ or update their strategies with probability $1-p$ depending on their payoffs. Numerical simulation shows that the final network is either split into some disconnected communities whose players share the same strategy within each community or forms a single connected network in which all nodes are in the same strategy. Interestingly, the density of cooperators in the final state can be maximised in an intermediate range of $p$ via the competition between time scale of the network dynamics and that of the node dynamics. Finally, the mean-field analysis helps to understand the results of numerical simulation. Our results may provide some insight into understanding the emergence of cooperation in the real situation where the individuals' behaviour and their relationship adaptively co-evolve.  相似文献   

2.
Eleni Arapaki 《Physica A》2009,388(13):2757-2761
We study the spatial prisoner’s dilemma game where the players are located on the nodes of a random scale-free network. The prisoner’s dilemma game is a powerful tool and has been used for the study of mutual trust and cooperation among individuals in structured populations. We vary the structure of the network and the payoff values for the game, and show that the specific conditions can greatly influence the outcome of the game. A variety of behaviors are reproduced and the percentage of cooperating agents fluctuates significantly, even in the absence of irrational behavior. For example, the steady state of the game may be a configuration where either cooperators or defectors dominate, while in many cases the solution fluctuates between these two limiting behaviors.  相似文献   

3.
Leslie Luthi 《Physica A》2008,387(4):955-966
Situations of conflict giving rise to social dilemmas are widespread in society. One way of studying these important phenomena is by using simplified models of individual behavior under conflicting situations such as evolutionary game theory. Starting from the observation that individuals interact through networks of acquaintances, we study the evolution of cooperation on model and real social networks through well known paradigmatic games. Using a new payoff scheme which leaves replicator dynamics invariant, we find that cooperation is sustainable in such networks, even in the difficult case of the prisoner’s dilemma. The evolution and stability of cooperation implies the condensation of game strategies into the existing community structures of the social network in which clusters of cooperators survive thanks to their higher connectivity towards other fellow cooperators.  相似文献   

4.
Much of human cooperation remains an evolutionary riddle. Coevolutionary public goods games in structured populations are studied where players can change from an unproductive public goods game to a productive one, by evaluating the productivity of the public goods games. In our model, each individual participates in games organized by its neighborhood plus by itself. Coevolution here refers to an evolutionary process entailing both deletion of existing links and addition of new links between agents that accompanies the evolution of their strategies. Furthermore, we investigate the effects of time scale separation of strategy and structure on cooperation level. This study presents the following: Foremost, we observe that high cooperation levels in public goods interactions are attained by the entangled coevolution of strategy and structure. Presented results also confirm that the resulting networks show many features of real systems, such as cooperative behavior and hierarchical clustering. The heterogeneity of the interaction network is held responsible for the observed promotion of cooperation. We hope our work may offer an explanation for the origin of large-scale cooperative behavior among unrelated individuals.  相似文献   

5.
We propose an elimination mechanism in the study of the evolutionary prisoner’s dilemma games on evolving networks. It assumes that after each round of playing, players whose payoffs are below a certain threshold will be eliminated from the game and the same number of new nodes will be added to the network to maintain the size of the network constant. Numerical results show that moderate values of elimination threshold can result in a maximum cooperation level in the evolutionary prisoner’s dilemma game. Moreover, the elimination mechanism can make the network structure evolve into a high heterogeneity in degree distribution, which is considered to be helpful in promoting cooperation in evolutionary games. The present study may provide new insight for understanding the evolution of cooperation in light of the law ‘survival of the fittest’ in nature.  相似文献   

6.
We investigate the prisoner's dilemma game based on a new rule: players will change their current strategies to opposite strategies with some probability if their neighbours' average payoffs are higher than theirs. Compared with the cases on regular lattices (RL) and Newman-Watts small world network (NW), cooperation can be best enhanced on the scale-free Barabasi-Albert network (BA). It is found that cooperators are dispersive on RL network, which is different from previously reported results that cooperators will form large clusters to resist the invasion of defectors. Cooperative behaviours on the BA network are discussed in detail. It is found that large-degree individuals have lower cooperation level and gain higher average payoffs than that of small-degree individuals. In addition, we find that small-degree individuals more frequently change strategies than do large- degree individuals.  相似文献   

7.
An evolutionary prisoner’s dilemma game with players adjusting their learning motivation is studied. At each time step, each player can adjust his/her learning motivation according to the difference between the current payoff and payoff aspiration. Greater payoff aspiration means stronger learning motivation, and vice versa. We find that the density of cooperation in a spatial prisoner’s dilemma game is enhanced when the learning motivation mechanism is considered. Meanwhile, we show that proper noise can not only induce the highest cooperation level but also can maintain the cooperation phenomenon even though there is more temptation to defect.  相似文献   

8.
Xianyu Bo 《Physica A》2010,389(5):1105-1114
Prevailing models of the evolutionary prisoner’s game on networks always assume that agents are pursuing their own profit maximization. But the results from experimental games show that many agents have other-regarding preference. In this paper, we study the emergence of cooperation from the prisoner’s dilemma game on complex networks while some agents exhibit other-regarding preference such as inequality aversion, envious and guilty emotions. Contrary to common ideas, the simulation results show that the existence of inequality aversion agents does not promote cooperation emergence on a BA (Barabási and Albert) scale-free network in most situations. If the defection attraction is big and agents exhibit strong preference for inequality aversion, the frequency of cooperators will be lower than in situations where no inequality aversion agents exist. In some cases, the existence of the inequality agents will even induce the frequency of cooperators to zero, a feature which is not observed in previous research on the prisoner’s dilemma game when the underlying interaction topology is a BA scale-free network. This means that if an agent cares about equality too much, it will be difficult for cooperation to emerge and the frequency of cooperators will be low on BA networks. The research on the effect of envy or guilty emotions on the emergence of cooperation in the prisoner’s dilemma game on BA networks obtains similar results, though some differences exist. However, simulation results on a WS (Watts and Strogatz) small-world network display another scenario. If agents care about the inequality of agents very much, the WS network favors cooperation emergence in the prisoners’ dilemma game when other-regarding agents exist. If the agent weight on other-regarding is lowered, the cooperation frequencies emerging on a WS network are not much different from those in situations without other-regarding agents, although the frequency of cooperators is lower than those of the situation without other-regarding preference agents sometimes. All the simulation results imply that inequality aversion and its variations can have important effects on cooperation emergence in the prisoner’s dilemma game, and different network topologies have different effects on cooperation emergence in the prisoner’s dilemma game played on complex networks.  相似文献   

9.
We investigate the evolution of cooperative behaviors with increasing neighborhood size on diluted lattices. For three typical pairwise game models which include prisoner’s dilemma, snowdrift and stag hunt games, all numerical results indicate that cooperation can persist or emerge around the optimal population density which is dictated by the percolation threshold on the square lattice. Meanwhile, the neighborhood size determines the interaction ranges of focal players and then dominates the percolation threshold, and extensive numerical simulations demonstrate that the intermediate neighborhood size is the most beneficial to the evolution of cooperation in the current lattice setup. The current findings can help to deeply understand the sustenance and emergence of collective cooperation in many natural, social and economic systems.  相似文献   

10.
Yongkui Liu  Zhi Li  Long Wang 《Physica A》2011,390(1):43-49
We investigate the effect of community structure on the evolution of cooperation in the prisoner’s dilemma and the snowdrift game with dynamical linking. We show both analytically and numerically that cooperators are generally more favorable on community networks than on networks without community structure, and in particular, there exists an optimal intermediate value of the model parameter leading to the easiest fixation of cooperators. We show that our results are robust with respect to the initial number of cooperators and are valid for a wide range of the ratio of time scales associated with linking and strategy dynamics. Since community structure is ubiquitous in real social networks, our results may provide new insights into the evolution of cooperation in real world.  相似文献   

11.
We investigate coevolution dynamics of both individual strategies and social ties as they adapt within the snowdrift game with mixed strategies. We propose a partner selection mechanism based on the concept of trust. Here trust is considered an instrument for an individual both selecting the right partners and being selected amongst other potential partners. Based on her local views of the system, the focal individual dismisses the link from the partner with the lowest trust and rewires to the partner’s partner with the highest trust. It is shown that such a trust-based partner switching mechanism favors the emergence of cooperators. Furthermore, when the number of an individual’s partners is restricted (which is a metaphor of limited capacities and capabilities of an individual in real environments), surprising assortative mixing patterns are formed in the emerging network and change the network’s degree distribution from a power-law distribution to an asymmetrically U-shaped distribution. This plays a leading role in preventing global avalanches triggered by perturbations acting on the state of the highly connected individuals.  相似文献   

12.
We study the evolution of cooperation in structured populations within popular models of social dilemmas, whereby simple coevolutionary rules are introduced that may enhance players abilities to enforce their strategy on the opponent. Coevolution thus here refers to an evolutionary process affecting the teaching activity of players that accompanies the evolution of their strategies. Particularly, we increase the teaching activity of a player after it has successfully reproduced, yet we do so depending on the disseminated strategy. We separately consider coevolution affecting either only the cooperators or only the defectors, and show that both options promote cooperation irrespective of the applied game. Opposite to intuitive reasoning, however, we reveal that the coevolutionary promotion of players spreading defection is, in the long run, more beneficial for cooperation than the likewise promotion of cooperators. We explain the contradictive impact of the two considered coevolutionary rules by examining the differences between resulting heterogeneities that segregate participating players, and furthermore, demonstrate that the influential individuals completely determine the final outcome of the games. Our findings are immune to changes defining the type of considered social dilemmas and highlight that the heterogeneity of players, resulting in a positive feedback mechanism, is a fundamental property promoting cooperation in groups of selfish individuals.  相似文献   

13.
Previous studies concerning the prisoner’s dilemma game on graphs conventionally assume that individuals select role models from their replacement graphs at random. We propose a extended prisoner’s dilemma game model to study the impact of recommended role models on the evolution of cooperation in a homogeneous population. Individuals are endowed with the capacity to recommend the ones they imitated in the past to their neighbors for strategy updating. Numerical simulations show that cooperation can be improved significantly when recommendation is allowed. Our results might be helpful in explaining the widespread cooperation in the real world.  相似文献   

14.
We focus on the heterogeneity of social networks and its role to the emergence of prevailing cooperators and sustainable cooperation. The social networks are representative of the interaction relationships between players and their encounters in each round of games. We study an evolutionary Prisoner's Dilemma game on a variant of Newman-Watts small-world network, whose heterogeneity can be tuned by a parameter. It is found that optimal cooperation level exists at some intermediate topological heterogeneity for different temptations to defect. That is, frequency of cooperators peaks at a certain specific value of degree heterogeneity — neither the most heterogeneous case nor the most homogeneous one would favor the cooperators. Besides, the average degree of networks and the adopted update rule also affect the cooperation level.  相似文献   

15.
We formulate the head-to-head matchups between Major League Baseball pitchers and batters from 1954 to 2008 as a bipartite network of mutually-antagonistic interactions. We consider both the full network and single-season networks, which exhibit structural changes over time. We find interesting structure in the networks and examine their sensitivity to baseball’s rule changes. We then study a biased random walk on the matchup networks as a simple and transparent way to (1) compare the performance of players who competed under different conditions and (2) include information about which particular players a given player has faced. We find that a player’s position in the network does not correlate with his placement in the random walker ranking. However, network position does have a substantial effect on the robustness of ranking placement to changes in head-to-head matchups.  相似文献   

16.
Run-Ran Liu  Chun-Xiao Jia 《Physica A》2010,389(24):5719-5724
Heritability is ubiquitous within most real biological or social systems. A heritable trait is most simply an offspring’s trait that resembles the parent’s corresponding trait, which can be fitness, strategy, or the way of strategy adoption for evolutionary games. Here we study the effects of heritability on the evolution of spatial public goods games. In our model, the fitness of players is determined by the payoffs from the current interactions and their history. Based on extensive simulations, we find that the density of cooperators is enhanced by increasing the heritability of players over a wide range of the multiplication factor. We attribute the enhancement of cooperation to the inherited fitness that stabilizes the fitness of players, and thus prevents the expansion of defectors effectively.  相似文献   

17.
Xiao-Heng Deng  Zhi-Gang Chen 《Physica A》2010,389(22):5173-5181
Most papers about evolutionary games on graph assume agents have no memory. Yet, in the real world, interaction history can also affect an agent’s decision. So we introduce a memory-based agent model and investigate the Prisoner’s Dilemma game on a Heterogeneous Newman-Watts small-world network based on a Genetic Algorithm, focusing on heterogeneity’s role in the emergence of cooperative behaviors. In contrast with previous results, we find that a different heterogeneity parameter domain range imposes an entirely different impact on the cooperation fraction. In the parameter range corresponding to networks with extremely high heterogeneity, the decrease in heterogeneity greatly promotes the proportion of cooperation strategy, while in the remaining parameter range, which relates to relatively homogeneous networks, the variation of heterogeneity barely affects the cooperation fraction. Also our study provides a detailed insight into the microscopic factors that contribute to the performance of cooperation frequency.  相似文献   

18.
Mostafa Salehi  Mahdi Jalili 《Physica A》2010,389(23):5521-5529
Networks of dynamical nodes serve as generic models for real-world systems in many branches of science ranging from mathematics to physics, technology, sociology and biology. Collective behavior of agents interacting over complex networks is important in many applications. The cooperation between selfish individuals is one of the most interesting collective phenomena. In this paper we address the interplay between the motifs’ cooperation properties and their abundance in a number of real-world networks including yeast protein-protein interaction, human brain, protein structure, email communication, dolphins’ social interaction, Zachary karate club and Net-science coauthorship networks. First, the amount of cooperativity for all possible undirected subgraphs with three to six nodes is calculated. To this end, the evolutionary dynamics of the Prisoner’s Dilemma game is considered and the cooperativity of each subgraph is calculated as the percentage of cooperating agents at the end of the simulation time. Then, the three- to six-node motifs are extracted for each network. The significance of the abundance of a motif, represented by a Z-value, is obtained by comparing them with some properly randomized versions of the original network. We found that there is always a group of motifs showing a significant inverse correlation between their cooperativity amount and Z-value, i.e. the more the Z-value the less the amount of cooperativity. This suggests that networks composed of well-structured units do not have good cooperativity properties.  相似文献   

19.
We study the effects of mobility on the evolution of cooperation among mobile players, which imitate collective motion of biological flocks and interact with neighbors within a prescribed radius R. Adopting the the prisoner’s dilemma game and the snowdrift game as metaphors, we find that cooperation can be maintained and even enhanced for low velocities and small payoff parameters, when compared with the case that all agents do not move. But such enhancement of cooperation is largely determined by the value of R, and for modest values of R, there is an optimal value of velocity to induce the maximum cooperation level. Besides, we find that intermediate values of R or initial population densities are most favorable for cooperation, when the velocity is fixed. Depending on the payoff parameters, the system can reach an absorbing state of cooperation when the snowdrift game is played. Our findings may help understanding the relations between individual mobility and cooperative behavior in social systems.  相似文献   

20.
Reputation-based network selection mechanism using game theory   总被引:1,自引:0,他引:1  
Current and future wireless environments are based on the coexistence of multiple networks supported by various access technologies deployed by different operators. As wireless network deployments increase, their usage is also experiencing a significant growth. In this heterogeneous multi-technology multi-application multi-terminal multi-user environment users will be able to freely connect to any of the available access technologies. Network selection mechanisms will be required in order to keep mobile users “always best connected” anywhere and anytime. In such a heterogeneous environment, game theory techniques can be adopted in order to understand and model competitive or cooperative scenarios between rational decision makers. In this work we propose a theoretical framework for combining reputation-based systems, game theory and network selection mechanism. We define a network reputation factor which reflects the network’s previous behaviour in assuring service guarantees to the user. Using the repeated Prisoner’s Dilemma game, we model the user–network interaction as a cooperative game and we show that by defining incentives for cooperation and disincentives against defecting on service guarantees, repeated interaction sustains cooperation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号