首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Physics letters. A》2020,384(10):126218
Critical surface tension (CST) is a measure of solid surface tension and is mainly determined by measuring the contact angle of a droplet on a target solid surface. The concept of CST makes it possible to determine solid surface tension without any unprovable assumptions such as the Fowkes hypothesis. However, it requires somewhat special devices and skills for measuring the contact angle. In this work, we propose a simple method to determine the CST of a solid by measuring the droplet spreading area. This method is developed by combining the conventional CST with a simple analytical droplet model. The difference in estimated CSTs between our method and the conventional one is within 3.0%. Our method enables a quick and simple evaluation of the solid surface tension without special devices for measuring the contact angle.  相似文献   

2.
Some facts regarding the equation of state (EQS) in calculating the surface tension of solids by means of contact angle measurements were manifested. In the present investigation, it was mathematically proved that the surface tension of a solid as estimated by the EQS is in fact equivalent to the Zisman critical surface tension for that same solid. Additionally, the applicability of the EQS's approach in attaining the surface tension of powdered solids by the aid of the capillary rise procedure is also discussed and its limitations are clarified. Furthermore, a methodology was devised so that the surface tension of solids as determined by the EQS could be compared with those calculated by approaches using components of surface tension. This methodology revealed that the applications of approaches based on the geometric mean (i.e. Owens/Wendt and van Oss et al. relationships) are restricted to achieving only high surface tensions of solids.  相似文献   

3.
For sessile droplets partially wetting a solid surface, it has been observed experimentally that the value of the contact angle depends on the contact line curvature and this dependence has been attributed to tension in the contact line. But previous analyses of these observations have neglected adsorption at the solid-liquid interface and its effect on the surface tension of this interface. We show that if this adsorption is taken into account the relation between the contact angle and contact line curvature is completely accounted for without introducing line tension. Further, from the observed relation between the contact angle and contact line curvature, the adsorption at the solid-liquid interface can be determined, as can the surface tensions of the solid-liquid and solid-vapor interfaces.  相似文献   

4.
刘邱祖  寇子明  韩振南  高贵军 《物理学报》2013,62(23):234701-234701
矿井喷雾降尘是利用水雾使粉尘润湿沉降的过程,考虑到固体与液体间分子作用力,本文采用格子Boltzmann方法对液滴沿固壁铺展的动力学行为进行了数值模拟,结果发现铺展直径及动态接触角随时间呈指数规律,确定了液滴表面张力与铺展最大直径间的关系,固壁润湿性对铺展最大速度值影响较大,这些与物理试验及文献结果符合良好. 进一步考察了疏水性强的固壁,发现当液滴表面张力足够小时,铺展接触角可以在90°以下,与理论公式符合. 研究发现铺展过程中伴随着振荡,且铺展到最大时液膜有回缩趋势. 关键词: 液滴 格子Boltzmann方法 铺展 数值模拟  相似文献   

5.
We propose a novel approach to describe wetting of plane solid surfaces by liquid drops. A two-dimensional nonconserved phase field variable is employed to distinguish between wetted and nonwetted regions on the surface. The imbalance in the Young's force provides for the exchange of relative stability of the two phases. The three-phase contact line tension arises from the gradient energy and contact angle hysteresis from the kinetic coefficient. Using this theory, we discuss contact angle hysteresis on chemically heterogeneous surfaces. We show significant departure from the classical Cassie theory, which is attributed to defect pinning of the continuous triple line.  相似文献   

6.
The main purpose of this paper is to numerically study the effect of droplet radius, temperature, and surface wettability on droplet surface tension. Moreover, the validity of Young-Laplace equation (Y-L) for nano-droplet is examined. Simulations of droplet surrounded by its vapor and droplet on solid surface are carried out and the results are compared to each other in order to comprehend the role of surface wettability on droplet surface tension. The pair potential for the liquid-liquid and liquid-solid interaction is considered using Lennard-Jones model. Different numbers of atoms and surface wettabilities are employed to generate droplet of different radiuses. In addition, contact angle of droplet on solid surface is computed. Pressure tensor and density profile is locally calculated. Furthermore, liquid pressure is evaluated far from the interface using the virial theorem and gas pressure is obtained using an equation of state. In order to calculate the surface tension, two different approaches are employed; Young-Laplace equation and direct molecular dynamics (MD) simulation. The surface tension increases with increase in droplet radius and it is seen that the surface wettability does not directly influence the surface tension.  相似文献   

7.
Unlike conventional oil production methods, enhanced oil recovery (EOR) processes can recover most oil products from the reservoir. One method, known as wettability alteration, changes the hydrophilicity of the reservoir rock via decreased surface interactions with crude oils. The mitigation of these attractive forces enhances petroleum extraction and increases the accessibility of previously inaccessible rock deposits. In this work, silica nanoparticles (NPs) have been used to alter the wettability of two sandstone surfaces, Berea and Boise. Changes in wettability were assessed by measuring the contact angle and interfacial tension of different systems. The silica NPs were suspended in brine and a combined solution of brine and the Tween®20 nonionic surfactant at concentrations of 0, 0.001, and 0.01 wt% NP with both light and heavy crude oil. The stability of the different nanofluids was characterized by the size, zeta potential, and sedimentation of the particles in suspension. Unlike the NPs, the surfactant had a greater effect on the interfacial tension by influencing the liquid-liquid interactions. The introduction of the surfactant decreased the interfacial tension by 57 and 43% for light and heavy crude oil samples, respectively. Imaging and measurements of the contact angle were used to assess the surface-liquid interactions and to characterize the wettability of the different systems. The images reflect that the contact angle increased with the addition of NPs for both sandstone and oil types. The contact angle in the light crude oil sample was most affected by the addition of 0.001 wt% NP, which altered both sandstones’ wettability. Increases in contact angle approached 101.6% between 0 and 0.001 wt% NPs with light oil on the Berea sandstone. The contact angle however remained relatively unaffected by addition of higher NP concentrations, thus indicating that low NP concentrations can effectively be used for enhancing crude oil recovery. While the contact angle of the light crude oil plateaued, the heavy crude oil continued to increase with an increase in NP concentration; therefore indicating that a maximum contact angle in heavy crude oil was not yet achieved. The introduction of NPs in light and heavy crude oil samples altered both the Berea and Boise sandstone systems’ wettability, which in turn indicated the efficacy of the silica NPs and surfactants in generating a more water-wet reservoir. Consequently, silica NPs and surfactants are most promising for EOR across the range of oil types.  相似文献   

8.
《Composite Interfaces》2013,20(6):415-425
The formation of the microdroplets on fibres for the MDT test offers an opportunity to carry out surface tension measurements based on the angle of contact between the resin and the fibre. Liquid microdroplets of epoxy were deposited on glass fibres, and their diameter, length and cone angle were measured. The equilibrium shape of the droplet can be derived from the principle of conservation of work and energy. If the surface tension of the polymer droplet and the specific surface energy of the polymer coated fibre are similar, then the interfacial tension is given simply by: γint = (1-m) γ , where m is the gradient of a linear plot of functions of the measured parameters and γ is the liquid surface tension. The measurement of contact angles on a droplet/fibre system have been reported previously; however, our method proposes a different geometry and consequently a simpler solution to the problem, with an additional advantage of verification on the droplet equilibrium and accuracy of measurements.  相似文献   

9.
滴状冷凝中液滴的内外压差及临界半径   总被引:2,自引:0,他引:2       下载免费PDF全文
闵敬春 《物理学报》2002,51(12):2730-2732
用热力学方法证明了壁面上球冠形液滴的内外压差同样遵循经典的Laplace方程,并用力学方法给予了验证.液滴的内外压差与固液接触角无关,只取决于液体的表面张力和液滴半径;液滴的临界半径也与接触角无关,其值可用经典的Kalvin公式计算 关键词: 滴状冷凝 液滴 压差 临界半径  相似文献   

10.
11.
Particle size enlargement operations often involve the use of a liquid to improve powder cohesiveness. Capillary suction and surface tension forces acting through liquid menisci between particles are the primary source of the cohesive bonding. The strength of these forces, and consequently the strength of the wet agglomerate, is dependent upon the total liquid content, its distribution within the agglomerate, and the powder wettability (characterized by the liquid surface tension and powder/liquid contact angle). The tensile strength of powder compacts containing submicron carbon black particles has been measured as a function of saturation level for several liquids. It is found that the compact strength increases with increasing surface tension for liquids that exhibit a zero contact angle. Above the critical surface tension for wetting a more complicated situation exists where both the surface tension and contact angle are important.  相似文献   

12.
娄钦  臧晨强  王浩原  李凌 《计算物理》2019,36(2):153-164
将高精度的二氧化碳状态方程与气液两相流格子Boltzmann方法中的伪势模型耦合,研究微通道内二氧化碳气液两相流动的界面动力学行为,包括二氧化碳气泡和液滴的分裂、合并、变形,以及气液两相二氧化碳在演化过程中的质量交换.研究发现:当分裂和合并行为达到平衡,并且两相之间不发生质量交换时流动达到稳态.稳态时的流型主要依赖于表面张力,惯性力,管道的润湿性,以及初始体积分数.当表面张力较大时,微通道内形成的二氧化碳气泡或液滴会收缩成圆形,此时二氧化碳气泡或液滴会堵塞微通道,形成段塞流;随着表面张力的减小,形成的气泡或液滴不容易收缩,在微通道内更容易发生变形,出现泡状流或环状流.当壁面润湿性为强疏水性时,二氧化碳在微通道中的流动为环状流,其它润湿性下,流型为段塞流.体积分数较小时,二氧化碳两相流动的流型为段塞流,体积分数较大时,流型为环状流.  相似文献   

13.
叶学民  李永康  李春曦 《物理学报》2016,65(10):104704-104704
壁面温度是影响壁面润湿性的重要外部条件. 为解决液滴铺展中三相接触线处应力集中问题, 已有研究多采用预置液膜假设, 但无法探究壁面温度对润湿性的影响. 本文针对受热液滴在固体壁面上的铺展过程, 基于润滑理论建立了演化模型, 通过数值模拟, 从平衡接触角角度分析了温度影响壁面润湿性及铺展过程的内部机理. 研究表明: 随温度梯度增大, 液滴所受Marangoni效应增强, 致使液滴向低温区的铺展速率加快; 铺展过程中, 位于高温区的接触线与液滴主体部分间形成一层薄液膜, 重力与热毛细力先后主导该区域的铺展; 当液-固或气-液界面张力对温度的敏感度高于另两个界面时, 低温区方向的平衡接触角不断增大, 使壁面润湿性恶化, 导致液滴铺展减慢; 而当气-固界面张力对温度的敏感度高于其他两个界面时, 低温区方向上的平衡接触角将减小, 由此改善壁面润湿性, 加快液滴铺展; 在温度影响壁面润湿性和液滴铺展过程中, 平衡接触角起关键作用.  相似文献   

14.
润湿性梯度驱动液滴运动的格子Boltzmann模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
石自媛  胡国辉  周哲玮 《物理学报》2010,59(4):2595-2600
运用考虑了固体与液体间分子作用力的格子Boltzmann方法,数值研究了由于固液界面上表面张力梯度引起的Marangoni效应驱动的液滴运动.当表面张力梯度较小时,计算结果和前人的理论预测符合较好.而表面张力梯度较大时,由于液滴不变形和准平衡态等假设不再满足,理论预测的液滴运动速度高于数值模拟的结果.计算结果显示,在向亲水端运动过程中液滴内部出现旋涡结构,当润湿性梯度较大时,其前进速度和接触角随时间变化出现振荡. 关键词: 润湿性 格子Boltzmann方法 Marangoni效应 液滴  相似文献   

15.
运用考虑了固体与液体间分子作用力的格子Boltzmann方法,数值研究了由于固液界面上表面张力梯度引起的Marangoni效应驱动的液滴运动.当表面张力梯度较小时,计算结果和前人的理论预测符合较好.而表面张力梯度较大时,由于液滴不变形和准平衡态等假设不再满足,理论预测的液滴运动速度高于数值模拟的结果.计算结果显示,在向亲水端运动过程中液滴内部出现旋涡结构,当润湿性梯度较大时,其前进速度和接触角随时间变化出现振荡.  相似文献   

16.
应用激光蚀刻不同微织构表面的润湿性   总被引:1,自引:0,他引:1       下载免费PDF全文
熊其玉  董磊  焦云龙  刘小君  刘焜 《物理学报》2015,64(20):206101-206101
运用激光微织构技术, 通过控制微凹坑形状、间距、深度等参数, 在45#钢表面制备了一组表面算术平均偏差Sa相同但表面微观结构不同的试件. 使用Talysulf CCI Lite 非接触式三维光学轮廓仪对表面进行测量, 采用ISO 25178三维形貌表征参数对其形貌进行表征. 在SL200 KS光学法固液接触角和界面张力仪上针对32#汽轮机油进行润湿性试验, 分析了温度、液滴体积、表面结构特征等因素对润湿性的影响, 并借助ISO25178中部分参数对固体表面形貌随机特征与其润湿性之间的关联性进行了量化研究. 基于固液本征接触角为锐角, 研究结果表明: 固液接触角在润湿过程中先迅速减小, 之后逐渐趋于稳定; 固液平衡接触角随温度的升高而减小, 随液滴体积的增大先增大后减小; 激光微织构能够改变表面润湿性, Sa相同的表面, 微织构形状、方向均影响表面润湿性, 当槽状微织构表面的槽方向与液滴铺展方向一致时, 润湿效果最优. ISO25178系列三维形貌表征参数中幅度参数(Sku, Ssk)、空间参数(Str, Sal)、混合参数(Sdq, Sdr)与表面润湿性之间具有较强的关联性: Sku, Sal, Sdr越大, Ssk, Str, Sdq 越小的表面, 固液平衡接触角越小, 表面润湿性越好.  相似文献   

17.
对纳观接触角的确定曾有过许多研究工作, 本文对各种理论进行分析评论, 指出其各自的优缺点甚至错误, 认为最为简单实用的理论是朱如曾于1995年在《大学物理》((Vol. 14(2))) 的文章中对前人的宏观接触角的错误理论采用澄清接触角概念的方法所得到的纳观接触角的近似理论及近似公式α = (1-2EPS/EPL)π (其中EPLEPS分别表示液体内部一个液体分子的势能和固体表面一个液态分子与固体的相互作用势能, 并可用分子动力学(MD) 模拟得到), 此理论属于纳观接触角的分子动力学理论的近似简化形式, 值得进一步发展. 为此, 本文根据物理分析假设Gibbs张力表面上位于非三相接触区的一个液体分子的势能为EPL/2x, 三相接触线上一个液体分子与其余液体的相互作用势能为(1+kEPS/EPL)α EPL/2xπ, 其中xk 为优化参数. 根据Gibbs分界面上处处势能相等条件, 得到改进的纳观接触角的近似公式α = π({1-2xEPS/EPL)/(1+kEPS/EPL).对固体表面的氩纳米液柱, 在温度90K下对液体分子之间采用林纳德-琼斯(L-J) 势, 液体分子与固体原子间采用带有可变强度参数a的 L-J 势, 对0.650< a <0.825 范围内的8种a值进行了MD模拟.得到了相应的Gibbs 张力面.将其纳观底角视为近似纳观接触角, 结合物理条件(当EPS/EPL=0时, α = π)用最小二乘法得到优化参数值x=0.7141, k=1.6051和相关系数0.9997. 这一充分接近于1的相关系数表明, 对于不同相互作用强度的纳米液固接触系统, 优化参数xk确实可近似视为常数, 由此确认我们提出的利用MD模拟来确定纳观接触角近似公式中优化参数的可行性和该近似公式的一般适用性.  相似文献   

18.
The surface and interfacial properties of polymers are important for their applications. Generally, the surface property is quantitatively characterized by the surface tension or surface tension component parameters, which are obtained with the contact angle technique. However, the contact angle technique has an inherent problem, contact angle hysteresis phenomenon, which will result in many incredible surface tension data. In order to find a simple and easy method to estimate the rationality of a surface tension result, the relationship between dispersive surface tension component and density and molecular weight is researched in this work. It is found that for 30 organic solvents, there is a good relationship between the dispersive surface tension rd and the parameter . In addition, for 12 polymers, when the molecular weight is replaced with the molecular weight of the repeat unit, there is still the same relationship as for small liquids. However, because it is difficult to judge the accuracy of the published dispersive data of the polymers, the found experiential relationship needs further confirmation, requiring more reliable published data.  相似文献   

19.
Silicon nanowires grown epitaxially via the vapor–liquid–solid mechanism show a larger diameter at the base of the nanowire, which cannot be explained by an overgrowth of the nanowire alone. By considering the equilibrium condition for the contact angle of the droplet, the Neumann quadrilateral relation, a quasi-static model of epitaxial nanowire growth is derived. It is found that a change of the contact angle of the droplet is responsible for the larger diameter of the nanowire base, so that the expansion has to be considered a fundamental aspect of epitaxial vapor–liquid–solid growth. By comparison of experimental results with theoretical calculations, an estimate for the line tension is obtained. In addition, the growth model predicts the existence of two different growth modes. Only within a certain range of line-tension values is the mode corresponding to ordinary nanowire growth realized, whereas nanowire growth stops at a relatively small height if the line tension exceeds an upper boundary. An approximate analytic expression for the upper boundary as a function of the surface tensions is given. PACS 68.65.-k; 61.46.+w; 81.10.Bk  相似文献   

20.
喷雾冷却具有散热能力强、冷却工质需求量小等优点,在解决电子器件散热方面具有广阔的应用前景。纯水中添加醇类可以有效提升喷雾冷却性能。为进一步探索醇类添加剂强化喷雾冷却性能的机理,本文开展醇水混合溶液表面张力和接触角的实验测定研究。分别在水中加入不同浓度的乙醇、正丙醇、正丁醇、正戊醇、正己醇、正庚醇和正辛醇等醇类,利用悬滴法探究醇类浓度对溶液的表面张力的影响规律;利用Young-Laplace坐滴法探究醇类浓度对接触角的影响规律。结果表明,水中添加醇类后表面张力降低,且其随醇类溶质浓度的增加而变小,且其下降速率均随浓度的增加越来越慢;添加低醇类添加剂均可降低溶液的接触角,而高醇类接触角随浓度变化没有明显的变化规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号