首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
L.C. Davis 《Physica A》2008,387(25):6395-6410
Two diversion schemes that apportion demand between two on-ramps to reduce congestion and improve throughput on a freeway are analyzed. In the first scheme, drivers choose to merge or to divert to a downstream on-ramp based on information about average travel times for the two routes: (1) merge and travel on the freeway or (2) divert and travel on a surface street with merging downstream. The flow, rate of merging at the ramps, and the travel times oscillate strongly, but irregularly, due to delayed feedback. In the second scheme, diversion is controlled by the average mainline velocities just upstream of the on-ramps. Driver choice is not involved. If the average upstream velocity on the mainline drops below a predetermined value (20 m/s) vehicles are diverted to the downstream ramp. When the average mainline velocity downstream becomes too low, diversion is no longer permitted. The resultant oscillations in this scheme are nearly periodic. The period is dominated by the response time of the mainline to interruption of merging rather than delayed feedback, which contributes only a minor component linear in the distance separating the on-ramps. In general the second scheme produces more effective congestion reduction and greater throughput. Also the travel times for on-ramp drivers are less than that obtained by drivers who attempt to minimize their own travel times (first scheme). The simulations are done using the Kerner-Klenov stochastic three-phase theory of traffic [B.S. Kerner, S.L. Klenov, Phys. Rev. E 68 (2003) 036130].  相似文献   

2.
Takashi Nagatani 《Physics letters. A》2013,377(45-48):3296-3299
We study the dynamics of traffic system with two elevators using a elevator choice scenario. The two-elevator traffic system with real-time information is similar to the two-route vehicular traffic system. The dynamics of two-elevator traffic system is described by the two-dimensional nonlinear map. An elevator runs a neck-and-neck race with another elevator. The motion of two elevators displays such a complex behavior as quasi-periodic one. The return map of two-dimensional map shows a piecewise map.  相似文献   

3.
We study the effect of signals on the vehicular traffic in the two-route system at the tour-time feedback strategy where the vehicles move ahead through a series of signals. The Nagel–Schreckenberg model is applied to the vehicular motion. The traffic signals are controlled by both cycle time and split. The tour times on two routes fluctuate periodically and alternately. The period increases with decreasing the split. Also, the tour time on each route varies with time by synchronizing with the density. The dependences of tour times and densities on both split and cycle time are clarified.  相似文献   

4.
Ding-wei Huang 《Physica A》2007,383(2):603-612
We propose a simple cellular automaton model to study the traffic dynamics in a roundabout. Both numerical and analytical results are presented. We are able to obtain exact solutions in the full parameter space. Exact phase diagrams are derived. When the traffic from two directions mixed, there are only five distinct phases. Some of the combinations from naive intuition are strictly forbidden. We also compare the results to a signaled intersection.  相似文献   

5.
Traffic flows on crossing roads with an information board installed at the intersection have been simulated by a cellular automaton model. In the model, drivers have to enter the road with a shorter trip-time indicated on the information board, by making a turn at the intersection if necessary. The movement of drivers induces various traffic states, which are classified into six phases as a function of the car density. The dynamics of the traffic is expressed as the return map in the density–flow space, and analyzed on the basis of the car configuration on the roads.  相似文献   

6.
L.C. Davis 《Physica A》2012,391(4):1679-1691
Mitigation of congestion on a two-lane highway with an off-ramp and an on-ramp is simulated with three-phase traffic theory. Advanced travel information-the average velocity of vehicles near the bottleneck at an on-ramp-is used to divert vehicles at an upstream off-ramp. If enough vehicles divert, previously expanding synchronous flow congestion can be stalled and isolated to the region between the ramps. The introduction of lane restrictions (forbidding lane changing on the portion of highway between the ramps) in addition to diversion substantially reduces and essentially eliminates the congestion, restoring flow to nearly free-flow conditions.  相似文献   

7.
Mixed traffic flow consisting of vehicles equipped with adaptive cruise control (ACC) and manually driven vehicles is analyzed using car-following simulations. Simulations of merging from an on-ramp onto a freeway reported in the literature have not thus far demonstrated a substantial positive impact of ACC. In this paper cooperative merging for ACC vehicles is proposed to improve throughput and increase distance traveled in a fixed time. In such a system an ACC vehicle senses not only the preceding vehicle in the same lane but also the vehicle immediately in front in the other lane. Prior to reaching the merge region, the ACC vehicle adjusts its velocity to ensure that a safe gap for merging is obtained. If on-ramp demand is moderate, cooperative merging produces significant improvement in throughput (20%) and increases up to 3.6 km in distance traveled in 600 s for 50% ACC mixed flow relative to the flow of all-manual vehicles. For large demand, it is shown that autonomous merging with cooperation in the flow of all ACC vehicles leads to throughput limited only by the downstream capacity, which is determined by speed limit and headway time.  相似文献   

8.
Traffic flow directionality and network weight asymmetry are widespread notions in traffic networks. This paper investigates the influence of direction-dependant heterogeneity on traffic congestion. To capture the effect of the link directionality and link weight asymmetry, the heterogeneity indexes of complex networks and the traffic flow model are introduced. The numerical results show that the critical value of heterogeneity determines congestion transition processes. The congestion degree increases with heterogeneity when the network heterogeneity is at a subcritical region. A network is more tolerant of congestion if the heterogeneity of the network is smaller or larger than the critical value. Furthermore, when heterogeneity reaches the critical value, the average number of accumulated vehicles arrives at the maximum and the traffic flow is under a serious congestion state. A significant improvement on the tolerance to congestion of traffic networks can be made if the network heterogeneity is controlled within a reasonable range.  相似文献   

9.
In this paper, we present a new lattice model which involves the effects of traffic interruption probability to describe the traffic flow on single lane freeways. The stability condition of the new model is obtained by the linear stability analysis and the modified Korteweg-de Vries (KdV) equation is derived through nonlinear analysis. Thus, the space will be divided into three regions: stable, metastable and unstable. The simulation results also show that the traffic interruption probability could stabilize traffic flow.  相似文献   

10.
11.
12.
The effect of accelerating stepwise on the jamming transition is investigated in the extended car-following model. The optimal velocity function is modified to take into account accelerating stepwise vehicles. It is shown that the multiple phase transitions occur on varying the car density. The multiple transitions change with the delay time. The flow-density curves and the velocity-headway curves are presented for various delay times. It is also shown that the multiple jamming transition lines are consistent with the neutral stability curves. The jamming transitions are closely related with the turning points of the optimal velocity function.  相似文献   

13.
Chen Chen  Jianqiao Chen  Xiwei Guo 《Physica A》2010,389(1):141-2279
Based on the cellular automata method (CA method), two-lane traffic flow with the consideration of overtaking is investigated. Discrete equations are proposed to describe the traffic dynamics by using the rules of CA model. Influences of signal cycle time (ts) and vehicular density (ρ) on the mean velocity 〈v〉 and mean overtaking times 〈c〉 of the traffic flow are discussed. The effects of slow vehicles and road barricades on the traffic flow are also studied. Simulation results shows that the vehicular density and the signal cycle time have significant influences on the traffic flow. The mean velocity of the traffic flow could keep a comparatively large value when ρ≤0.45. For a certain value of ρ, 〈v〉 displays a serrated fluctuation with ts. Therefore, there may exist a certain combination of ρ and ts which optimizes the traffic flow efficiency. As compared with the results in Nagatani (2009) [7], the model proposed here and the simulation results which took into account the effects of signal cycle time, slow vehicles, and road barricades on the traffic flow with overtaking allowed, can reflect the situation of traffic flow in a more realistic way.  相似文献   

14.
We study the four-directional traffic flow on a two-dimensional lattice. In the case of discrete densities, we assume equal number of vehicles in each lane. Except for the minimum density, the gridlock emerges swiftly. Two kinds of gridlock have been observed. The global gridlock dominates the system when the density is twice the minimum value. At higher densities, the system is pervaded by local gridlocks. We also analyze the time evolution of average speed. In the case of continuous densities, the vehicle numbers vary from lane to lane. The global gridlock is then destroyed by the fluctuations; while the local gridlock can still be observed.  相似文献   

15.
Mixed traffic flow consisting of vehicles equipped with wireless inter-vehicle communication devices and non-equipped vehicles is analyzed using bidirectionally coupled network traffic and road traffic simulators in a peak hour scenario. For equipped vehicles a strategy to stabilize traffic flow and to reduce travel time is proposed. The strategy comprises rules to determine both how and when to change driving behavior. Vehicles that detect perturbations downstream try to keep a larger gap to their predecessor by which they aim to compensate traffic inhomogeneities. Improvement of traffic flow was observed even for a ratio of equipped vehicles as low as five percent.  相似文献   

16.
17.
Median U-turns are sometimes installed to improve the traffic flow at busy intersections by eliminating left turns. Using a microscopic traffic model, we confirmed the presence of transitions from free flow to congested flow with increasing car inflow density. In addition, our proposed rules inside a U-turn curve, which accounted for safety issues and an asymmetric lane changing behavior (outer-to-inner vs. inner-to-outer lane transitions), predicted the speed distribution of cars after the U-turn curve. We found that U-turn curves installed for improving traffic flow at busy intersections produced their desired effects only when there is minimal interaction between cars.  相似文献   

18.
We introduce the preference parameter into the two-route dynamic model proposed by Wahle et al. The parameter represents the driver’s preference for the route choice. When the driver prefers a route, the traffic flow on route A does not balance with that on route B. We study the signal control for the unbalanced two-route traffic flow at the tour-time feedback strategy where the vehicles move ahead through a series of signals. The traffic signals are controlled by both cycle time and phase shift (offset time). We find that the mean tour time can be balanced by selecting the offset time successfully. We derive the relationship between the mean tour time and offset time (phase shift). Also, the dependences of the mean density and mean current on the offset time are derived.  相似文献   

19.
We study the traffic jams appearing on a single-lane highway with a few slowdown sections. At low density, the flow (current) increases linearly with density, while it saturates at some values of intermediate density. In such case that some slowdown sections have the same speed limit, when the flow begins to saturate, a single discontinuous front (stationary shock wave) occurs before a slowdown section or some discontinuous fronts appear before some slowdown sections. For the case of different speed limits, the discontinuous front occurs before the section of strongest slowdown. The saturated flow is given by the maximal value of the current of the strongest slowdown section. The relationship between the densities is derived before and after the discontinuity. The dependence of jam lengths on density is derived numerically and analytically.  相似文献   

20.
Pengjian Shang  Yongbo Lu  Santi Kama   《Physica A》2006,370(2):769-776
In this paper, we applied multifractal modeling techniques to analyze the traffic data collected from the Beijing Yuquanying. The results indicated that multifractal characteristics obviously exist in the traffic system; the degree of fractality of these traffic data tends to increase as the traffic system becomes congested; the Hölder exponent that measures the local rate of fractality may be used as indicators to predict the presence of the traffic congestion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号