首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 113 毫秒
1.
Methyl-coenzyme M reductase (MCR) catalyzes the reaction of methyl-coenzyme M (CH3-S-CoM) with coenzyme B (HS-CoB) to methane and CoM-S-S-CoB. At the active site, it contains the nickel porphinoid F430, which has to be in the Ni(I) oxidation state for the enzyme to be active. How the substrates interact with the active site Ni(I) has remained elusive. We report here that coenzyme M (HS-CoM), which is a reversible competitive inhibitor to methyl-coenzyme M, interacts with its thiol group with the Ni(I) and that for interaction the simultaneous presence of coenzyme B is required. The evidence is based on X-band continuous wave EPR and Q-band hyperfine sublevel correlation spectroscopy of MCR in the red2 state induced with 33S-labeled coenzyme M and unlabeled coenzyme B.  相似文献   

2.
Magnetic circular dichroism (MCD) spectroscopy and variable-temperature variable-field MCD are used in combination with density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations to characterize the so-called ox1-silent, red1, and ox1 forms of the Ni-containing cofactor F430 in methyl-coenzyme M reductase (MCR). Previous studies concluded that the ox1 state, which is the precursor of the key reactive red1 state of MCR, is a Ni(I) species that derives from one-electron reduction of the Ni(II)-containing ox1-silent state. However, our absorption and MCD data provide compelling evidence that ox1 is actually a Ni(II) species. In support of this proposal, our DFT and TD-DFT calculations indicate that addition of an electron to the ox1-silent state leads to formation of a hydrocorphin anion radical rather than a Ni(I) center. These results and biochemical evidence suggest that ox1 is more oxidized than red1, which prompted us to test a new model for ox1 in which the ox1-silent species is oxidized by one electron to form a thiyl radical derived from coenzyme M that couples antiferromagnetically to the Ni(II) ion. This alternative ox1 model, formally corresponding to a Ni(III)/thiolate resonance form but with predicted S = 1/2 EPR parameters reminiscent of a Ni(I) (3dx2-y2)1 species, rationalizes the requirement for reduction of ox1 to yield the red1 species and the seemingly incongruent EPR and electronic spectra of the ox1 state.  相似文献   

3.
F430M, the pentamethyl ester of coenzyme F430, can be oxidized reversibly by one electron. The oxidation potential has been determined, and the electrolytically prepared oxidation product was characterized by its UV/VIS and ESR spectrum. The strongly anisotropic and nearly axial ESR spectrum is consistent with a S = ½ species with the unpaired-electron spin density predominantly in a d-type orbital of the central nickel ion. The properties of Ni(III)F430M are discussed in the context of two hypothetical mechanisms for the catalytic role of coenzyme F430 in methyl coenzyme M reductase, which catalyses the last step of methane formation in methanogenic bacteria.  相似文献   

4.
Methanogenic archaea utilize a specific pathway in their metabolism, converting C1 substrates (i.e., CO2) or acetate to methane and thereby providing energy for the cell. Methyl-coenzyme M reductase (MCR) catalyzes the key step in the process, namely methyl-coenzyme M (CH3-S-CoM) plus coenzyme B (HS-CoB) to methane and CoM-S-S-CoB. The active site of MCR contains the nickel porphinoid F430. We report here on the coordinated ligands of the two paramagnetic MCR red2 states, induced when HS-CoM (a reversible competitive inhibitor) and the second substrate HS-CoB or its analogue CH3-S-CoB are added to the enzyme in the active MCR red1 state (Ni(I)F430). Continuous wave and pulse EPR spectroscopy are used to show that the MCR red2a state exhibits a very large proton hyperfine interaction with principal values A((1)H) = [-43,-42,-5] MHz and thus represents formally a Ni(III)F430 hydride complex formed by oxidative addition to Ni(I). In view of the known ability of nickel hydrides to activate methane, and the growing body of evidence for the involvement of MCR in "reverse" methanogenesis (anaerobic oxidation of methane), we believe that the nickel hydride complex reported here could play a key role in helping to understand both the mechanism of "reverse" and "forward" methanogenesis.  相似文献   

5.
6.
Methyl-coenzyme M reductase (MCR) catalyzes methane formation from methyl-coenzyme M (methyl-SCoM) and N-7-mercaptoheptanoylthreonine phosphate (CoBSH). MCR contains a nickel hydrocorphin cofactor at its active site, called cofactor F(430). Here we present evidence that the macrocyclic ligand participates in the redox chemistry involved in catalysis. The active form of MCR, the red1 state, is generated by reducing another spectroscopically distinct form called ox1 with titanium(III) citrate. Previous electron paramagnetic resonance (EPR) and (14)N electron nuclear double resonance (ENDOR) studies indicate that both the ox1 and red1 states are best described as formally Ni(I) species on the basis of the character of the orbital containing the spin in the two EPR-active species. Herein, X-ray absorption spectroscopic (XAS) and resonance Raman (RR) studies are reported for the inactive (EPR-silent) forms and the red1 and ox1 states of MCR. RR spectra are also reported for isolated cofactor F(430) in the reduced, resting, and oxidized states; selected RR data are reported for the (15)N and (64)Ni isotopomers of the cofactor, both in the intact enzyme and in solution. Small Ni K-edge energy shifts indicate that minimal electron density changes occur at the Ni center during redox cycling of the enzyme. Titrations with Ti(III) indicate a 3-electron reduction of free cofactor F(430) to generate a stable Ni(I) state and a 2-electron reduction of Ni(I)-ox1 to Ni(I)-red1. Analyses of the XANES and EXAFS data reveal that both the ox1 and red1 forms are best described as hexacoordinate and that the main difference between ox1 and red1 is the absence of an axial thiolate ligand in the red1 state. The RR data indicate that cofactor F(430) undergoes a significant conformational change when it binds to MCR. Furthermore, the vibrational characteristics of the ox1 state and red1 states are significantly different, especially in hydrocorphin ring modes with appreciable C=N stretching character. It is proposed that these differences arise from a 2-electron reduction of the hydrocorphin ring upon conversion to the red1 form. Presumably, the ring-reduction and ligand-exchange reactions reported herein underlie the enhanced activity of MCR(red1), the only form of MCR that can react productively with the methyl group of methyl-SCoM.  相似文献   

7.
The structure of a derivative of coenzyme F430 from methanogenic bacteria, the bromide salt of 12,13-diepi-F430 pentamethyl ester ( 5 , X = Br), was determined by X-ray structure analysis. It reveals a more pronounced saddle-shaped out-of-plane deformation of the macrocycle than any hydroporphinoid Ni complex investigated so far. The crystal structure confirms the constitution proposed for coenzyme F430 ( 2 ) and shows that in the epimer 5 , the three stereogenic centers in ring D, C(17), C(18), and C(19), have the (17S)-, (18S)-, and (19R)-configuration, respectively. Deuteration and 2D-NMR studies independently demonstrate that native coenzyme F430 (2) has the same configuration in ring D as the epimer 5 . Therefore, our original tentative assignment of configuration at C(19) and C(18) [1] has to be reversed. This completes the assignment of configuration for all stereogenic centers in coenzyme F430, which has the structure shown in Formula 2 .  相似文献   

8.
Methyl-coenzyme M reductase (MCR) catalyzes the formation of methyl-coenzyme M (CH(3)S-CH(2)CH(2)SO(3)) from methane. The active site is a nickel tetrahydrocorphinoid cofactor, factor 430, which in inactive form contains EPR-silent Ni(II). Two such forms, denoted MCR(silent) and MCR(ox1)(-)(silent), were previously structurally characterized by X-ray crystallography. We describe here the cryoreduction of both of these MCR forms by gamma-irradiation at 77 K, which yields reduced protein maintaining the structure of the oxidized starting material. Cryoreduction of MCR(silent) yields an EPR signal that strongly resembles that of MCR(red1), the active form of MCR; and stepwise annealing to 260-270 K leads to formation of MCR(red1). Cryoreduction of MCR(ox1)(-)(silent) solutions shows that our preparative method for this state yields enzyme that contains two major forms. One behaves similarly to MCR(silent), as shown by the observation that both of these forms give essentially the same redlike EPR signals upon cryoreduction, both of which give MCR(red1) upon annealing. The other form is assigned to the crystallographically characterized MCR(ox1)(-)(silent) and directly gives MCR(ox1) upon cryoreduction. X-band spectra of these cryoreduced samples, and of conventionally prepared MCR(red1) and MCR(ox1), all show resolved hyperfine splitting from four equivalent nitrogen ligands with coupling constants in agreement with those determined in previous EPR studies and from (14)N ENDOR of MCR(red1) and MCR(ox1). These experiments have confirmed that all EPR-visible forms of MCR contain Ni(I) and for the first time generated in vitro the EPR-visible, enzymatically active MCR(red1) and the activate-able "ready" MCR(ox1) from "silent" precursors. Because the solution Ni(II) species we assign as MCR(ox1)(-)(silent) gives as its primary cryoreduction product the Ni(I) state MCR(ox1), previous crystallographic data on MCR(ox1)(-)(silent) allow us to identify the exogenous axial ligand in MCR(ox1) as the thiolate from CoM; the cryoreduction experiments further allow us to propose possible axial ligands in MCR(red1). The availability of model compounds for MCR(red1) and MCR(ox1) also is discussed.  相似文献   

9.
Methyl-coenzyme M reductase (MCR) from Methanothermobacter marburgensis (Mtm), catalyses the final step in methane synthesis in all methanogenic organisms. Methane is produced by coenzyme B-dependent two-electron reduction of methyl-coenzyme M. At the active site of MCR is the corphin cofactor F(430), which provides four-coordination through the pyrrole nitrogens to a central Ni ion in all states of the enzyme. The important MCRox1 ("ready") and MCRred1 ("active") states contain six-coordinate Ni(I) and differ in their upper axial ligands; furthermore, red1 appears to be two-electrons more reduced than in ox1 and other Ni(II) states that have been studied. On the basis of the reactivity of MCRred1 and MCRox1 with a substrate analogue and inhibitor (3-bromopropanesulfonate) and other small molecules (chloroform, dichloromethane, mercaptoethanol, and nitric oxide), we present evidence that the six-coordinate Ni(I) centers in the MCRred1 and MCRox1 states exhibit markedly different inherent reactivities. MCRred1 reacts faster with chloroform (2100-fold or 35000-fold when corrected for temperature effects), nitric oxide (90-fold), and 3-bromopropanesulfonate (10(6)-fold) than MCRox1. MCRred1 reacts with chloroform and dichloromethane and, like F(430), can catalyze dehalogenation reactions and produce lower halogenated products. We conclude that the enhanced reactivity of MCRred1 is due to the replacement of a relatively exchange-inert thiol ligand in MCRox1 with a weakly coordinating upper axial ligand in red1 that can be easily replaced by incoming ligands.  相似文献   

10.
Factor F430 from Methanogenic Bacteria: On the Nature of the Isolation Artefacts of F430, a Contribution to the Chemistry of F430 and the Conformational Stereochemistry of the Ligand Periphery of Hydroporphinoid Nickel(II) Complexes Factor F430 ( 1 ), a coenzyme from methanogenic bacteria, when heated in aqueous solution isomerizes to 12,13-di-epi-F430 ( 5 ) via 13-epi-F430 ( 3 ). The equilibrium mixture of the three F430 isomers in aqueous phosphate buffer solution (pH 7, 100°) contains 88 % of 5 , 8 % of 3 , and 4 % of 1 (Scheme 1). The structural assignment for the F430 isomers rests on FAB-MS-, UV/VIS-, 1H- and 13C-NMR spectra of their pentamethyl esters. Chemical proof for the double epimerization at the two chiral centers of F430's ring C was provided by ozonolytic degradation of the di-epimer to give a ring-C-derived succinimide derivative that was shown to be the enantiomer of the one previously obtained by ozonolysis of F430M (see Scheme 2). The two F430 ring-C epimers 3 and 5 are the isolation artefacts described in the earlier F430 literature. F430 is susceptible to autoxidation in air and the product, that absorbs at 560 nm, was shown to be the 12,13-didehydro derivative 8 of F430 by spectroscopic characterization of its pentamethyl ester 9 . The dehydrogenation product 8 can be diastereoselectively reduced with Zn in AcOH to give natural F430 as the main product rather than the thermodynamically more stable F430-di-epimer (Scheme 3). In the double epimerization of F430, the two ring-C side chains change from a trans-quasi-diaxial arrangement to the (locally) enantiomorphic position in which the same side chains are again in a trans-quasi-diaxial arrangement. This equilibrium paradox as well as the kinetic diastereoselectivity of the reduction of 12,13-didehydro-F430 ( 8 ) are rationalized to be consequences of the general phenomenon documented earlier (see the preceding paper) according to which hydroporphinoid Ni(II) complexes all show a characteristic conformational ruffling of their ligand system due to the tendency of the (small) Ni(II) ion to contract the size of the ligand's central coordination hole (see Fig. 5 and 6).  相似文献   

11.
Methyl-coenzyme M reductase (MCR) catalyzes the reaction of methyl-coenzyme M (CH3-SCoM) and coenzyme B (HS-CoB) to methane and the corresponding heterodisulfide CoM-S-S-CoB. This unique reaction proceeds under strictly anaerobic conditions in the presence of coenzyme F430, a Ni-porphinoid. MCR is a large (alphabetagamma)2 heterohexameric protein complex containing two 50 A long active sites channels. Coenzyme F430 is embedded at the channel bottom and the substrates CH3-SCoM and HS-CoB bind in front of F430 into a solvent free and hydrophobic channel segment. Two principally different catalytic mechanisms are currently discussed. Mechanism I is based on a nucleophilic attack of Ni(I) onto the methyl group of CH3-SCoM yielding methyl-Ni(III) and mechanism II on an attack of Ni(I) onto the thioether sulfur of CH3-SCoM generating a Ni(II)-SCoM intermediate. Both mechanisms are discussed in the light of a large number of data collected about MCR over the last twenty years.  相似文献   

12.
Microbial mats collected at cold methane seeps in the Black Sea carry out anaerobic oxidation of methane (AOM) to carbon dioxide using sulfate as the electron acceptor. These mats, which predominantly consist of sulfate-reducing bacteria and archaea of the ANME-1 and ANME-2 type, contain large amounts of proteins very similar to methyl-coenzyme M reductase from methanogenic archaea. Mass spectrometry of mat samples revealed the presence of two nickel-containing cofactors in comparable amounts, one with the same mass as coenzyme F430 from methanogens (m/z = 905) and one with a mass that is 46 Da higher (m/z = 951). The two cofactors were isolated and purified, and their constitution and absolute configuration were determined. The cofactor with m/z = 905 was proven to be identical to coenzyme F430 from methanogens. For the m/z = 951 species, high resolution ICP-MS pointed to F430 + CH2S as the molecular formula, and LA-ICP-SF MS finally confirmed the presence of one sulfur atom per nickel. Esterification gave two stereoisomeric pentamethyl esters with m/z = 1021, which could be purified by reverse phase HPLC and were subjected to comprehensive NMR analysis, allowing determination of their constitution and configuration as (17(2)S)-17(2)-methylthio-F430 pentamethyl ester and (17(2)R)-17(2)-methylthio-F430 pentamethyl ester. The corresponding diastereoisomeric pentaacids could also be separated by HPLC and were correlated to the esters via mild hydrolysis of the latter. Equilibration of the pentaacids under acid catalysis showed that the (17(2)S) isomer is the naturally occurring albeit thermodynamically less stable one. The more stable (17(2)R) isomer (80% at equilibrium) is an isolation artifact generated under the acidic conditions necessary for the isolation of the cofactors from the calcium carbonate-encrusted mats.  相似文献   

13.
We present the 1.2 ? resolution X-ray crystal structure of a Ni-methyl species that is a proposed catalytic intermediate in methyl-coenzyme M reductase (MCR), the enzyme that catalyzes the biological formation of methane. The methyl group is situated 2.1 ? proximal of the Ni atom of the MCR coenzyme F(430). A rearrangement of the substrate channel has been posited to bring together substrate species, but Ni(III)-methyl formation alone does not lead to any observable structural changes in the channel.  相似文献   

14.
Todd LN  Zimmer M 《Inorganic chemistry》2002,41(25):6831-6837
Normal-coordinate structural decomposition, cluster analysis, and molecular mechanics calculations were undertaken to examine the effect of methyl-coenzyme-M reductase (MCR) on the nonplanar deformations of coenzyme F430. Although free 12,13-diepi-F430 has a lower energy conformation than free F430, the protein restraints exerted by MCR are responsible for F430 having a lower energy conformation than the 12,13-diepimer in MCR. According to the NSD analysis, the crystal structure of free diepimerized F430M is highly distorted. In MCR the protein prevents 12,13-diepi-F430 from undergoing nonplanar deformations; therefore, MCR favors F430 over the 12,13-diepimeric form. The strain imposed on 12,13-diepi-F430 in the protein is so large that although 88% of free F430 is found in the diepimeric form, none of the diepimeric form is found in MCR. This is of significance since the two forms have different chemistries. MCR also moderates the nonplanar deformations of coenzyme F430, which are known to affect redox potentials and axial ligand affinities in tetrapyrroles, suggesting that the protein environment (MCR) is responsible for tuning the chemistry of the active site nickel ion. F430 is bound to MCR by hydrogen bonds between the protein and the F430 carboxylate groups. Conformational searches have shown that F430 has very little rotational and translational freedom within MCR.  相似文献   

15.
A methylnickel(II) derivative of coenzyme F430 ( 1 ) was proposed as an intermediate in the enzymic process catalyzed by methyl-CoM reductasc. Indirect evidence points to formation of CH3–F430MII in the reaction of F30M1 (obtained from F430MII ( 2 )) with eleclrophilic methyl donors. The results presented here show, that such a compound does exist. A paramagnetic CD3–NiII derivative 5b of the pentamethyl ester 2 (F430M) of coenzyme F430 was prepared by in situ methylation with (CD3)2Mg and characterized by its isotropically shifted 2H-NMR spectrum. At ?40°, the very broad D-signal of the axially coordinated CD3 group is found at ?490 ppm. Comparison with the 2H- and 1H-NMR spectra of mcthyl(tetramethylcyclam)nickel(II) derivatives 4 ([NiII(CH3))(tmc)]CF3SO3 ( 4a ) is the only isolated CH3–Ni derivative of a N4macrocyclic NiII complex' shows that the large isotropic shift to high field is characteristic for a Me group axially bound to the Ni center. The temperature dependence of the isotropic shift of the CD3–Ni group in both 4b and 5b follows Curie's law and yields 2H hyperfine coupling constants of ?0.65 ( 4b ) and ?0.85 MHz ( 5b ), respectively. The 1H-NMR spectrum indicates that, in contrast to the five-coordinate monochloro complex [NiIICl(tmc)]+, intermolecular exchange of the axial ligand in [NiII(CH3)(tmc)]+ 4a is either slow at the NMR time scale or does not occur at all.  相似文献   

16.
Methyl-coenzyme-M reductase (MCR) is a key enzyme common to all methane-producing pathogens. It catalyses the final step in methane synthesis. Each MCR contains two noncovalently bound molecules of cofactor F430. Normal-coordinate structural decomposition, hole-size analysis, and molecular mechanics calculations were undertaken to examine the effect of MCR on the hole-size and nonplanar deformations of coenzyme F430. In MCR, the protein prevents F430 from undergoing nonplanar deformations, which results in a more rigid tetrahydrocorphinoid cofactor that has a shorter ideal metal-nitrogen distance in the MCR protein matrix than it does in solution. Changing the coordination number of the nickel ion in F430 has a very small effect on the ideal hole size; however, it has a significant effect on the nonplanar deformations the coenzyme undergoes upon contraction and expansion. In all complexes we examined, cofactor F430 undergoes more nonplanar deformations when it contains a four-coordinate metal ion than it does when it contains a six-coordinate metal ion. Clearly, MCR moderates the hole-size and the nonplanar deformations of coenzyme F430, which are known to affect redox potentials and axial ligand affinities. This suggests that the protein environment may be responsible for tuning the chemistry of the active-site nickel ion.  相似文献   

17.
The Ni(I) tetraazacycles [Ni(dmmtc)](+) and [Ni(mtc)](+), which have methylthioethyl pendants, were synthesized as models of the reduced state of the active site of methyl coenzyme M reductase (MCR), and their structures and redox properties were elucidated (dmmtc, 1,8-dimethyl-4,11-bis{(2-methylthio)ethyl}-1,4,8,11-tetraaza-1,4,8,11-cyclotetradecane; mtc, 1,8-{bis(2-methylthio)ethyl}-1,4,8,11-tetraaza-1,4,8,11-cyclotetradecane). The intramolecular CH(3)-S bond of the thioether pendant of [Ni(I)(dmmtc)](OTf) was cleaved in THF at 75 °C in the presence of the bulky thiol DmpSH, which acts as a proton source, and methane was formed in 31% yield and a Ni(II) thiolate complex was concomitantly obtained (Dmp = 2,6-dimesityphenyl). The CH(3)-S bond cleavage of [Ni(I)(mtc)](+) also proceeded similarly, but under milder conditions probably due to the lower potential of the [Ni(I)(mtc)](+) complex. These results indicate that the robust CH(3)-S bond can be homolytically cleaved by the Ni(I) center when they are properly arranged, which highlights the significance of the F430 Ni environment in the active site of the MCR protein.  相似文献   

18.
Myoglobin reconstituted with Ni tetradehydrocorrin was investigated as a model of F430‐containing methyl‐coenzyme M reductase, which catalyzes anaerobic methane generation. The NiII tetradehydrocorrin complex has a NiII/NiI redox potential of ?0.34 V vs. SHE and EPR spectroscopy indicates the formation of a NiI species upon reduction by dithionite. This redox potential is approximately 0.31 V more positive than that of F430. The NiI tetradehydrocorrin moiety is bound to the apo‐form of myoglobin to yield the reconstituted protein. Methane gas is generated in the reaction of the model with methyl iodide in the presence of the reconstituted protein under reductive conditions, whereas the NiI complex itself does not produce methane gas. This is the first example of a protein‐based functional model of F430‐containing methyl‐coenzyme M reductase.  相似文献   

19.
The Schiff base ligand, N,N'-bis-(2-thiophenecarboxaldimine)-3,3'-diaminobenzidine (L) obtained from condensation of 2-thiophenecarboxaldehyde and 3,3'-diaminobenzidine, was used to synthesize the complexes of type, [M2L2]Cl4 [M=Co(II), Ni(II), Cu(II), Cd(II) and Hg(II)]. The newly synthesized ligand (L) was characterized on the basis of the results of elemental analysis, FT-IR, 1H NMR, 13C NMR, mass spectroscopic studies and single crystal X-ray crystallography. The characteristic resonance signals in 1H NMR and 13C NMR spectra indicated the presence of azomethine group as a result of condensation reaction. The stoichiometry, bonding and stereochemistries of complexes were ascertained on the basis of results of elemental analysis, magnetic susceptibility measurements, molar conductance and spectroscopic studies viz., FT-IR, 1H and 13C NMR, UV-vis and EPR. EPR, UV-vis and magnetic moment data revealed an octahedral geometry for complexes with distortion in Cu(II) complex and conductivity data show 1:2 electrolytic nature of complexes. Absoption and fluorescence spectroscopic studies supported that Schiff base ligand L and its Co(II), Ni(II) and Cu(II) complexes exhibited significant binding to calf thymus DNA. The complexes exhibited higher affinity to calf thymus DNA than the free Schiff base ligand L.  相似文献   

20.
The effects of metal ions on the reduction of nitric oxide (NO) with a designed heme copper center in myoglobin (F43H/L29H sperm whale Mb, CuBMb) were investigated under reducing anaerobic conditions using UV-vis and EPR spectroscopic techniques as well as GC/MS. In the presence of Cu(I), catalytic reduction of NO to N2O by CuBMb was observed with turnover number of 2 mol NO.mol CuBMb-1.min-1, close to 3 mol NO.mol enzyme-1.min-1 reported for the ba3 oxidases from T. thermophilus. Formation of a His-heme-NO species was detected by UV-vis and EPR spectroscopy. In comparison to the EPR spectra of ferrous-CuBMb-NO in the absence of metal ions, the EPR spectra of ferrous-CuBMb-NO in the presence of Cu(I) showed less-resolved hyperfine splitting from the proximal histidine, probably due to weakening of the proximal His-heme bond. In the presence of Zn(II), formation of a five-coordinate ferrous-CuBMb-NO species, resulting from cleavage of the proximal heme Fe-His bond, was shown by UV-vis and EPR spectroscopic studies. The reduction of NO to N2O was not observed in the presence of Zn(II). Control experiments using wild-type myoglobin indicated no reduction of NO in the presence of either Cu(I) or Zn(II). These results suggest that both the identity and the oxidation state of the metal ion in the CuB center are important for NO reduction. A redox-active metal ion is required to deliver electrons, and a higher oxidation state is preferred to weaken the heme iron-proximal histidine toward a five-coordinate key intermediate in NO reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号