首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Photoinduced reduction of thymine glycol in oligodeoxynucleotides was investigated using either a reduced form of flavin adenine dinucleotide (FADH(-)) as an intermolecular electron donor or covalently linked phenothiazine (PTZ) as an intramolecular electron donor. Intermolecular electron donation from photoexcited flavin (FADH(-)) to free thymidine glycol generated thymidine in high yield, along with a small amount of 6-hydroxy-5,6-dihydrothymidine. In the case of photoreduction of 4-mer long single-stranded oligodeoxynucleotides containing thymine glycol by *FADH(-), the restoration yield of thymine was varied depending on the sequence of oligodeoxynucleotides. Time-resolved spectroscopic study on the photoreduction by laser-excited N,N-dimethylaniline (DMA) suggested elimination of a hydroxyl ion from the radical anion of thymidine glycol with a rate constant of approximately 10(4) s(-1) generates 6-hydroxy-5,6-dihydrothymidine (6-HOT(*)) as a key intermediate, followed by further reduction of 6-HOT(*) to thymidine or 6-hydroxy-5,6-dihydrothymdine (6-HOT). On the other hand, an excess electron injected into double-stranded DNA containing thymine glycol was not trapped at the lesion but was further transported along the duplex. Considering redox properties of the nucleobases and PTZ, competitive excess electron trapping at pyrimidine bases (thymine, T and cytosine, C) which leads to protonation of the radical anion (T(-)(*), C(-)(*)) or rapid back electron transfer to the radical cation of PTZ (PTZ(+)(*)), is presumably faster than elimination of the hydroxyl ion from the radical anion of thymine glycol in DNA.  相似文献   

3.
The binding of nalidixic acid (NA) with human and bovine serum albumin (HSA and BSA) in buffer solution at pH 7.4 was investigated using circular dichroism (CD), UV absorption and fluorescence spectroscopy. Global analysis of multiwavelength spectroscopic data afforded the equilibrium constants of the most stable noncovalent drug/protein adducts of 1:1 and 2:1 stoichiometry and their individual CD, UV absorption, and fluorescence spectra. The primary binding site of the drug was located in subdomain IIIA (Sudlow Site II), whereas the secondary one was assigned to subdomain IIA. Conformational and CD calculations afforded the binding geometries. In the complexes, the fluorescence of the protein was strongly quenched by energy transfer and that of the drug was suppressed by electron transfer. Laser flash photolysis at 355 nm evidenced the formation of a radical pair consisting of a tyroxyl radical (lambdamax = 410 nm) and a reduced nalidixate anion radical NA(2-)* (lambdamax = 640 nm) with quantum yield of 0.4-0.5. Strong evidence was obtained that the process that involves Tyr411 in HSA (Tyr409 in BSA). A further transient with lambdamax approximately 780 nm observed in HSA was attributed to oxidation of the -(S200-S246)- bridge upon electron transfer to NA(-)*. Decay of the confined radical pairs occurred with rates approximately 10(7) s(-1). Formation of covalent drug-protein adducts in mixtures irradiated at lambdairr> 324 nm was proved using HPLC with fluorescence detection.  相似文献   

4.
Abstract— The mechanism of the photoreduction of 9,10-anthraquinone (AQ) in alcohol and hexane has been studied by flash photolysis. The fluorescence spectrum of the photoproduct, 9,10-dihydroxy anthracene shows a large shift between hexane and ethanol. The quantum yields of photoreduction for AQ are solvent-dependent, the reaction between the solvent radical and AQ determining the quantum yield.
The absorption spectrum of the 9,10-anthrasemiquinone (AQH.) has a long-wavelength absorption band with peaks at 631 and 678 nm. The second-order decay constants for AQH. were estimated to be 1.3 × 109, 6.7 × 108 and 2.0 × 108 M -1 sec-1 in ethanol, 2-propanol and ethylene glycol, respectively.
A long-wavelength absorption band was observed for 9,10-anthrasemiquinone radical anion, having peaks at 776 and 860 nm; epsi;max= 1900 at 776 nm. This spectrum is compared with the spectra of 9,10-dihydroxy anthracene mono- and di-anions. The 9,10-anthrasemiquinone radical anion was found to photoreduce quantitatively to 9,10-dihydroxy anthracene mono-anion with a quantum yield of 0.1.  相似文献   

5.
EPR spectra show that one-electron reduction of bis(3-phenyl-6,6-(trimethylsilyl)phosphinine-2-yl)dimethylsilane (1) on an alkali mirror leads to a radical anion that is localized on a single phosphinine ring, whereas the radical anion formed from the same reaction in the presence of cryptand or from an electron transfer with sodium naphthalenide is delocalized on the two phosphinine rings. Density functional theory (DFT) calculations show that in the last species the unpaired electron is mainly confined in a loose P-P bond (3.479 A), which results from the overlap of two phosphorus p orbitals. In contrast, as attested by X-ray spectroscopy, the P-P distance in neutral 1 is large (5.8 A). As shown by crystal structure analysis, addition of a second electron leads to the formation of a classical P-P single bond (P-P 2.389 A). Spectral modifications induced by the presence of cryptand or by a change in the reaction temperature are consistent with the formation of a tight ion pair that stabilizes the radical structure localized on a single phosphinine ring. It is suggested that the structure of this pair hinders internal rotation around the C-Si bonds and prevents 1 from adopting a conformation that shortens the intramolecular P-P distance. The ability of the phosphinine radical anion to reversibly form weak P-P bonds with neutral phosphinines in the absence of steric hindrance is confirmed by EPR spectra obtained for 2,6-bis(trimethylsilyl)-3-phenylphosphinine (2). Moreover, as shown by NMR spectroscopy, in this system, which contains only one phosphinine ring, further reduction leads to an intermolecular reaction with the formation of a classical P-P bond.  相似文献   

6.
The investigation on UV-visible spectra of species formed by extracting some metal picrates with benzo-15-crown-5(B15C5) and dibenzo-18-crown-6(DB18C6) verified that there are some interactions of picrate anion with K , Na and rare earth ions in loaded organic phase. By the study of the charge transfer band and absorption spectra of picrate anion, it can be determined whether an ion pair has been formed and either a 1 : 1 contact ion pair or a 1 : 2 crown-separated ion pair involved in organic phase can be distinguished for an ion-pair extraction.  相似文献   

7.
The role of base sequence and conformation on the photochemistry and photophysics of thymidylyl (3'-5')-2'-deoxyadenosine sodium salt (TpdA) and 2-deoxyadenylyl (3'-5')-thymidine ammonium salt (dApT) was studied. To this end, nanosecond transient absorption at 266 nm, steady-state irradiation at 254 nm, and quantum chemical calculations were used. The transient absorption spectra show the solvated electron broad band in the visible region for each dinucleotide. In addition, low-intensity absorption bands are observed in the UV region, which are attributed to the deprotonated and protonated neutral radicals of adenine and thymine bases. Photoionization (PI) occurs by one- and two-photon pathways; the latter accounting for approximately 70% of the net PI yield. A diffusion-limited rate constant of 2.0 x 10(10) M(-1) s(-1) was obtained for the reaction of the neutral molecule with the photoejected electron in both sequences. The photodestruction yield, measured from the chromophore loss at 260 nm, decreases in the presence of well-known electron scavengers. This suggests the participation of base radical anions as one of the photodegradation pathways, which is higher in TpdA than in dApT. The intermediacy of a radical ion pair (charge separated state) between the adjacent adenine and thymine bases is proposed in the formation of the [2 + 2] cycloadduct intermediate. The [2 + 2] cycloadduct intermediate is known to be the precursor of the thymine-adenine eight-member ring photoproduct (TA*). Conformational constrains in the radical ion pair are suggested to explain the absence of the TA* photoproduct in dApT. This hypothesis is supported by semiempirical calculations performed on all relevant reactive intermediates proposed to participate in the mechanism of formation of TA*. Altogether, the results show that sequence and conformation profoundly influence the photochemistry and the photophysics of these DNA model systems.  相似文献   

8.
The reactions between edaravone and various one-electron oxidants such as (*)OH, N(3)(*), Br(2)(-), and SO(4)(-), have been studied by pulse radiolysis techniques. The transient species produced by the reaction of edaravone with (*)OH radical shows an absorption band with lambda(max)=320 nm, while the oxidation by N(3)(*), Br(2)(-), SO(4)(-) and CCl(3)OO(*) results in an absorption band with lambda(max)=345 nm. Different from the previous reports, the main transient species by the reaction of edaravone with (*)OH radical in the absence of O(2) is attributed to OH-adducts. At neutral condition (pH 7), the rate constants of edaravone reacting with (*)OH, N(3)(*), SO(4)(-), CCl(3)OO(*), and e(aq)(-) are estimated to be 8.5x10(9), 5.8x10(9), 6x10(8), 5.0x10(8) and 2.4x10(9)dm(3)mol(-1)s(-1), respectively. From the pH dependence on the formation of electron adducts and on the rate constant of edaravone with hydrated electron, the pK(a) of edaravone is estimated to be 6.9+/-0.1.  相似文献   

9.
The (*)OH-induced oxidation of 1,3,5-trithiacyclohexane (1) in aqueous solution was studied by means of pulse radiolysis with optical and conductivity detection. This oxidation leads, via a short-lived (*)OH radical adduct (<1 micros), to the radical cation 1(*+) showing a broad absorption with lambda(max) equal to 610 nm. A defined pathway of the decay of 1(*+) is proton elimination. It occurs with k = (2.2 +/- 0.2) x 10(4) s(-1) and yields the cyclic C-centered radical 1(-H)(*). The latter radical decays via ring opening (beta-scission) with an estimated rate constant of about 10(5) s(-1). A distinct, immediate product (formed with the same rate constant) is characterized by a narrow absorption band with lambda(max) = 310 nm and is attributed to the presence of a dithioester function. The formation of the 310 nm absorption can be suppressed in the presence of oxygen, the rationale for this being a reaction of the C-centered cyclic radical 1(-H)(*) with O(2). The disappearance of the 310 nm band (with a rate constant of 900 s(-1)) is associated with the hydrolysis of the dithioester functionality. A further aspect of this study deals with the reaction of H(*) atoms with 1 which yields a strongly absorbing, three-electron-bonded 2sigma/1sigma* radical cation [1(S therefore S)-H](+) (lambda(max) = 400 nm). Its formation is based on an addition of H(*) to one of the sulfur atoms, followed by beta-scission, intramolecular sulfur-sulfur coupling (constituting a ring contraction), and further stabilization of the S therefore S bond thus formed by protonation. [1(S therefore S)-H](+) decays with a first-order rate constant of about 10(4) s(-1). Its formation can be suppressed by the addition of oxygen which scavenges the H(*) atoms prior to their reaction with 1. Complementary time-resolved conductivity experiments have provided information on the quantification of the 1(*+) radical cation yield, the cationic longer-lived follow-up species, extinction coefficients, and kinetics concerning deprotonation processes as well as further reaction steps after hydrolysis of the transient dithioesters. The results are also discussed in the light of previous photochemical studies.  相似文献   

10.
The reaction of [60]fullerene with a variety of a secondary aliphatic amines in 20% v/v dimethyl sulfoxide in chlorobenzene under an atmospheric pressure of molecular oxygen allows regioselective introduction of four amino groups and one epoxide group around one pentagon of the fullerene molecule in good to high yield. This new synthesis of tetraaminofullerene expoxide can be carried out with a simple procedure on a multigram scale at room temperature and affords a variety of functionalized fullerene derivatives. Near-infrared analysis of a mixture of [60]fullerene and piperidine in a deaerated dimethyl sulfoxide/chlorobenzene mixture indicated equilibrium formation of [60]fullerene radical anion (C60*-) that persists at least for 2 weeks at room temperature but reacts immediately with molecular oxygen to give the tetraaminofullerene expoxide. The Benesi-Hildebrand analysis of the concentration dependency of the near-infrared absorption indicated that a [C60*- piperidine*+] radical ion pair is formed with an equivalent constant of K = 0.62 +/- 0.02 M(-1) at 25 degrees C. This and other lines of evidence suggest that the oxygenative amination reaction involves C60-mediated reduction of molecular oxygen by the amine.  相似文献   

11.
The photoreduction of 6-nitrospiro[2H-1-benzopyran-2,2'-indoline] (N1) and two derivatives (N2 and N3) by diethylamine or triethylamine (TEA) in solution was studied by pulsed and steady-state photolysis. The quantum yield of coloration of the ring-closed Sp form, due to photoinduced ring opening, decreases in acetonitrile with increasing the TEA concentration. The main reason is reaction of TEA with the triplet-excited open merocyanine form. Quenching of this triplet state by amines is rather inefficient for N1-N3; the rate constant for triplet quenching by TEA is k(6) = (2-3) × 10(6) M(-1) s(-1). The secondary transient with an absorption maximum at 420 nm is ascribed to the radical anion. This and the corresponding α-aminoethyl radical subsequently undergo slow termination reactions, yielding a relatively stable product with a maximum at 420-450 nm, which is attributed to a ring-opened dihydromerocyanine (MH(-)). The mechanisms of the two subsequent reduction reactions are discussed. Using acetone as sensitizer the same dihydroproduct was obtained with the Sp form as acceptor, indicating a reaction sequence from photogenerated radicals via a ring-opened radical to MH(-)/MH(2). The effect of TEA concentration on the direct and ketone-sensitized reduction mechanisms was analyzed. Photoreduction by amines, due to competing triplet quenching, is strongly decreased on admission of oxygen.  相似文献   

12.
1.  Molecules of acridine and chloroacridine in the triplet state form triplet exciplexes of the radical ion pair type with tertiary aromatic amines. Proton transfer from the radical cation to the radical anion with formation of neutral radicals is the basic pathway of quenching of these exciplexes in a nonsolvating medium. In the presence of an alcohol, the triplet exciplexes disappear due to protonation of the radical anion in the exciplex.
2.  Quenching of triplet states of acridine and chloroacridine by secondary aromatic amines take place by transfer of an H atom from the amine regardless of the nature of the solvent.
3.  The singlet excited state is the most probable reactive state of 9-chloroacridine in photoreduction and photosubstitution reactions with aromatic amines.
Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 2, pp. 269–275, February, 1989.  相似文献   

13.
The wavelength dependence of photosubstitution, photoinduced electron transfer, and the time-resolved spectra of Cr(CNPh)6, a compound having low-lying MLCT states, were investigated. Photosubstitution quantum yields increase with increasing excitation energy while photoinduced electron transfer quantum yields decrease with increasing excitation energy. At the lowest excitation energy used (532 nm, or 18,800 cm(-1)), the quantum yields for both electron transfer and photosubstitution reach the same maximum value, 0.29. Picosecond time-resolved absorption spectra at 355 and 532 nm excitation wavelengths show two features: a bleach signal centered at 400 nm and an excited state absorption (ESA) in the 600 nm region. The ESA signal is much weaker for 532 nm excitations than for 355 nm excitations. Following a 355 nm flash, the bleach and ESA decay exponentially with the same lifetime of 23 micros. This implies a simple ligand dissociation followed by recombination. Bleach recovery kinetics after a 532 nm flash are more complicated: two or three exponential components are required to fit the data. Cr(CNPh)6 exhibits two photochemical mechanisms: at high excitation energy, a simple charge neutral dissociation occurs; at low energy, it is proposed that a phenylisocyanide radical anion dissociates, forming a radical pair that is responsible for the observed substitution and electron transfer reactivity, and the complicated nanosecond kinetics. The primary processes for both reactions occur in less than 20 ps.  相似文献   

14.
Lovely AE  Wenzel TJ 《Organic letters》2006,8(13):2823-2826
[reaction: see text] Enantiomeric discrimination is observed in the (1)H NMR spectra of chiral secondary amines in the presence of (R)-(+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid. Secondary amines are protonated by one of the carboxylic acid groups of the crown ether to produce the corresponding ammonium and carboxylate ions. The secondary ammonium ion likely forms two hydrogen bonds to crown ether oxygen atoms and an ion pair with the carboxylate anion.  相似文献   

15.
[reaction: see text] Photoreduction of oxoisoaporphine dyes occurs via a stepwise mechanism of electron-proton-electron transfer that leads to the N-hydrogen oxoisoaporphine anion. When triethylamine, TEA, was used as the electron donor in anaerobic conditions, 1-diethylaminobutadiene, DEAB, was one of the oxidation products of TEA, among diethylamine and acetaldehyde. DEAB was identified by (1)H NMR and GC-MS experiments by comparison with the authentic 1-diethylaminobutadiene. This is the first report of a butadienyl derivative formed in the dye-sensitized photooxidation of TEA. In addition, isotopic exchange experiments with TEA-d(15) and D(2)O show that the hydrogens at carbon-2 and carbon-4 of the butadienyl moiety are exchangeable. The observed isotopic exchange pattern could be explained by the head-to-tail coupling of an N,N-diethylvinylamine intermediate that exchanges hydrogens at the C-beta via the enammonium ion.  相似文献   

16.
Abstract— The radical cations and anions of diphenylhexatriene have been produced and characterized in homogenous and micellar solutions by pulse radiolysis and laser flash photolysis techniques. Both types of radical ions were formed in cyclohexane on pulse radiolysis. The radical cation was formed in dichloroethane on pulse radiolysis, and by two photon photoionization in ethanol, dichloroethane, and various micelles. Both radical ions have intense ( 105 M -1 cm-1) absorption peaks at600–650nm. The cation peak occurs at slightly shorter wavelengths than that of the anion.
In micelles and vesicles the radical anion of carotene was formed by electron transfer from ea– on pulse radiolysis. The radical cation was formed on pulse radiolysis of micellar solutions containing Br-2 as counterion, presumably by electron transfer to Br2-. The spectra agree with those of the radical cation and anion of carotene that have previously been obtained in homogenous solutions (Dawe and Land, 1975).
Electron transfer in micelles and vesicles from the radical anion of biphenyl to carotene and diphenylhexatriene, and from the radical anions of these to inorganic acceptors has been studied.  相似文献   

17.
The initial decrease of solvated electrons in tetrahydrofuran (THF) upon addition of biphenyl was investigated by picosecond pulse radiolysis. Transient absorption spectra derived from the biphenyl radical anion (centered at 408 and 655 nm) and solvated electrons of THF (infrared) were successfully measured in the wavelength region from 400 to 900 nm by the extension of a femtosecond continuum probe light to near-ultraviolet using a second harmonic generation of Ti:sapphire laser and a CaF2 plate. From the analysis of kinetic traces at 1300 nm considering the overlap of primary solvated electrons and partial biphenyl radical anion, C37, which is defined by the solute concentration to reduce the initial yield of solvated electrons to 1/e, was found to be 87 +/- 3 mM. The rate constant of solvated electrons with biphenyl was determined as 5.8 +/- 0.3 x 10(10) M(-1) s(-1). We demonstrate that the kinetic traces at both 408 nm mainly due to biphenyl radical anion and 1300 nm mainly due to solvated electrons are reproduced with high accuracy and consistency by a simple kinetic analysis. Much higher concentrations of biphenyl (up to 2 M) were examined, showing further increase of the initial yield of biphenyl radical anion accompanying a fast decay component. This observation is discussed in terms of geminate ion recombination, scavenging, delayed geminate ion recombination, and direct ionization of biphenyl at high concentration.  相似文献   

18.
The photo-induced one-electron reduction of hypocrellin A (abbreviated as HA) and hy-pocrellin B (abbreviated as HB) in the presence of cysteine or ascorbic acid has been studied in this paper. The semiquinone radical anions of HA and HB obtained from the photo-reduction of HA and HB respectively, and the following protonation and disproportionation of these radical anions were detected via the ESR and UV-Vis spectra. Through comparison of their UV-Vis spectra with those of the chemically synthesized compounds of similar structures, it has been suggested that the metastable products formed after the acceptance of net two electrons and two protons in the photoreduction of HA and HB were tetrahydroxyl-per-ylene derivatives.  相似文献   

19.
The photoreduction of aromatic nitro compounds by alcohols is a well-known reaction; however, the first stages of its mechanism remain controversial. This study aims at characterizing the "primary" radicalar transients involved in this reaction by EPR spectroscopy. Laser flash photolysis (lambda = 266 nm) of nitrobenzene, 5-nitrouracil, p-nitroacetophenone, o-propylnitrobenzene, and 2-nitroresorcinol in ethylene glycol was followed by time-resolved EPR spectroscopy. In all reported TR-EPR spectra, except those obtained from the photolysis of 2-nitroresorcinol, the key intermediate N-hydroxy-arylnitroxide radicals (ArNO*OH, 1-4) could be identified unambiguously. In 2-nitroresorcinol, the radical anion (ArNO*O(-), 5) and a sigma iminoxy radical (6) were observed, and a third radical (7) remains unidentified. These observations indicate that two radicalar mechanisms (by H* transfer and by electron transfer) are competing in the photoreduction mechanism. The attribution of the EPR spectra was helped by DFT calculations of the hyperfine coupling constants (hcc's).  相似文献   

20.
Substituted polythiophene and triethylenglycolpyrrolidino-C(60) blends are examined by time-resolved electron paramagnetic resonance (TR-EPR) at different temperatures. TR-EPR spectra recorded on the microsecond time scale after a short laser pulse are assigned to polythiophene and fullerene radical ion pairs, generated by electron transfer from the excited state of polythiophene to fullerene. At low temperatures, TR-EPR spectra show polarized lines with an antiphase emission/absorption pattern. The origin of the polarization pattern is described in the frame of spin correlated radical pair theory, in which two unpaired electron spins (on radical cation and anion, respectively) interact through isotropic spin exchange and anisotropic dipolar interactions. The polarization pattern is accounted for assuming a singlet excited state as the precursor of the charge-separated state. Spectral simulations yield dipolar and spin exchange coupling constants between unpaired electrons of the radical ion pair. Their values correspond to a mean distance between opposite charges of 22 A. When the temperature is increased, the spectra gradually loose their antiphase character and eventually consist of a signal totally in emission. This behavior is explained by a polarization mechanism involving a spin-selective charge recombination (ST(-1) mixing). The polarization pattern at different temperatures is examined in detail, and its generating mechanism is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号