首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rhodium(II) complexes with dioximes [Rh(Hdmg)2(PPh3)]2 [I] (Hdmg=monoanion of dimethylglyoxime) and [Rh(Hdmg)(ClZndmg)(PPh3)]2 [II] catalyse hydroformylation and hydrogenation reactions of 1-hexene at 1 MPa CO/H2 and 0.5 MPa H2 at 353 K, respectively. Hydroformylation with complex [I] produces 94% of aldehydes (n/iso=2.2) and 6% 2-hexene whereas the second catalyst [II] gives ca. 40% of aldehydes (n/iso=2.1) and 60% of 2-hexene. Corresponding Rh(III) complexes are inactive in hydroformylation except of RhH(Hdmg)2(PPh3) [III], which shows activity similar to [I]. Complexes [Rh(Hdmg)2(PPh3)]2 [I], [Rh(Hdmg)(ClZndmg)(PPh3)]2 [II], RhH(Hdmg)2(PPh3) [III] and [Rh(Hdmg)2(PPh3)2]ClO4 [V] catalyse 1-hexene hydrogenation with an average TON ca. 18 cycles/mol [Rh]×min. Complex [II] has also been found to catalyse hydrogenation of cyclohexene, 1,3-cyclohexadiene and styrene.  相似文献   

2.
In immobilizing the rhodium complexes [Rh(acac)(CO)(P)] (1) and [Rh(acac)(P)2] (2) (P = Ph2PCH2CH2Si(OMe)3) onto SiO2, acetylacetone is found to be released through protonation of the acac ligand by the acidic silica-OH groups. The resulting complexes [Rh(O-{SiO2}(HO-{SiO2})(CO)(P-{SiO2})] (1a) and [Rh(O-{SiO2})(HO-{SiO2})(P-{SiO2})2] (2a) were successfully tested with respect to their catalytic action on 1-hexene hydroformylation as well as benzene and toluene hydrogenation. The reaction outcome, viz. the formation of aldehydes versus isomerization, depends strongly on the presence and concentration of a phosphine co-catalyst. Thus, while 1a gave only a 17% yield of aldehyde in the absence of phosphines, the yield is increased to 54% in the presence of phosphinated silica P-{SiO2} or even 94% if PPh3 is added to the solution. Without extra added phosphine, both 1a and 2a effect mainly the isomerization of 1-hexene to 2-hexene. Pre-catalyst 1a catalyzes also the hydrogenation of benzene at 10.5 atm H2 and 90 °C to give cyclohexane with a TOF of 608 h−1.  相似文献   

3.
Cationic rhodium and iridium complexes of the type [M(COD)(PPh3)2]PF6 (M = Rh, 1a; Ir, 1b) are efficient precatalysts for the hydroformylation of 1-hexene to its corresponding aldehydes (heptanal and 2-methylhexanal), under mild pressures (2–5 bar) and temperatures (60 °C for Rh and 100 °C for Ir) in toluene solution; the linear to branched ratio (l/b) of the aldehydes in the hydroformylation reaction varies slightly (between 3.0 and 3.7 for Rh and close to 2 for Ir). Kinetic and mechanistic studies have been carried out using these cationic complexes as catalyst precursors. For both complexes, the reaction proceeds according to the rate law ri = K1K2K3k4[M][olef][H2][CO]/([CO]2 + K1[H2][CO] + K1K2K3[olef][H2]). Both complexes react rapidly with CO to produce the corresponding tricarbonyl species [M(CO)3(PPh3)2]PF6, M = Rh, 2a; Ir, 2b, and with syn-gas to yield [MH2(CO)2(PPh3)2]PF6, M = Rh, 3a; Ir, 3b, which originate by CO dissociation the species [MH2(CO)(PPh3)2]PF6 entering the corresponding catalytic cycle. All the experimental data are consistent with a general mechanism in which the transfer of the hydride to a coordinated olefin promoted by an entering CO molecule is the rate-determining step of the catalytic cycle.  相似文献   

4.
为了观察和监测反应条件下中间产物和催化剂的变化,自行设计并安装了高温高压红外流动池。池体用不锈钢制成,窗口材料为NaCl或CaF2。它可承受100atm和200℃。整个测量系统包括高压釜、循环泵、红外池等。用Microlab-600型红外分光光度计记录图谱。池内温度和压力与反应釜桐同,可对反应液体、气体或气液混合物进行"原位"追踪。当用铑膦络合物催化剂进行丙烯氢甲酰化反应时,在近于工业反应条件下(t=10O℃,P=17atm,正丁醛溶剂),检测到催化剂母体Rh(acac)(CO)(PPh3)转化为活性物种RhH(CO)2(PPh3)2;在合成气压力较低时,只转化为RhH(CO)(PPh3)3;此活性物种随催化剂失活而消失。催化剂加氧失活后,检测到配位体三苯基膦氧化为氧化三苯基膦,催化剂生成二聚物,丙烯氧化成丙酮,追踪到原料气CO氧化为CO3的动态过程。本文对"原位"红外光谱实验方法、高温高压红外池作了介绍,并给出有关实验数据和结果。  相似文献   

5.
Members of the series of bridging diphosphine clusters [Os3(CO)10(diphos)] where diphos = Ph2P(CH2nPPh2 [dppm (n = 1), dppe (n = 2), dppp (n = 3), or dppb (n = 4)] show interesting differences in their reactivity towards H+ and H2. Protonation leads to [Os3(μ-H)(CO)10(diphos)]+ with the hydrides bridging the same osmium atoms as the diphos ligand when diphos is dppe, dppp, or dppb, whereas the hydride and dppm bridge different edges in [Os39μ-H)(CO)10(dppm)]+. Hydrogenation of the 1,2-diphos compounds leads to [Os3(μ-H)2(CO)8(diphos)] (diphos = dppm, dppe, dppp) in good to excellent yield but the dppb analogue could not be made. Geometric and electronic factors affecting the ability to incorporate hydride ligands in these clusters are discussed.  相似文献   

6.
Photochemical reaction of (CO)2(dppe)Fe(H)(SiR3) with HSiR3 (SiR3 = Si(OMe)3, Si(OEt)3, SiMe3, SiMe2Ph, SiPh3) yields the trihydrido silyl complexes (CO)(dppe)FeH3(SiR3 ). The analogous complexes (PR′Ph2)3 FeH3(ER3) are prepared by reaction of the H2 -complexes (PR′Ph2)3FeH2(H2) with HER3 (ER3 = SiMe3, SiMC2Ph, SiMePh2, SiPh3, Si(Me2)OSi(Me2)H, SnPh3, SnEt3). Additional derivates of (CO) (dppe)FeH3(SiR3) (SiR3 = SiMePh2) and (PR′Ph2)3FeH3(SiR3) (SiR3 = Si(OMe)3, SiH2Ph, SiHPh2, Si(OEt)3, SiMePhCl) are accessible by silane exchange starting from (CO)(dppe)FeH3(SiMe3) and (PR′Ph2) 3FeH3(SiMe3). (PBuPh2)3FeH3(SiMePh2) was also prepared from (PBuPh2)3FeH2(N2) and HSiMePh2, and (PBuPh2)3FeH3(SnMe3) from (PBuPh2)3FeH2(H2) and Me3SnCl. The complex (PBuPh2) 3FeH3(SnMe3) crystallizes as a toluene solvate in the cubic space group I 3d and shows crystallographically imposed C3-symmetry. The complexes (CO)2 (dppe)Fe(H)(SiR3) and (PR′Ph2)3FeH3(ER3) are highly dynamic in solution. Low temperature NMR measurements and the E, Fe, H coupling constants strongly indicate that the exchange mechanism involves η2-HER3 ligands.  相似文献   

7.
Synthesis of H3Ru33-CSEt)(CO)9, is accomplished by base-promoted attack of ethanethiol on H3Ru33-CBr)(CO)9. Thermolysis of this product under CO yields HRu3(CH2SEt)(CO)9. Reactions of H3Ru33-CSEt)(CO)9 with alkynes C2R2 form HRu333-EtSCCRCR)(CO)9 (R = Me or Ph) and Ru3 (cis-CR=CHR)(CSEt)(CO)9 (R = Me). The chemistry of H3Ru33-CSEt)(CO)9 differs significantly from that of the analogous ether derivative H3Ru33-COMe)(CO)9.  相似文献   

8.
The complexes (Hal)Nb(CO)3(PR3)3 (PR3 = PEt3, Hal = I; PR3 = PMe2Ph, Hal = Cl, Br, I) and (Hal)Nb(CO)4/2(dppe)1/2 (Hal = Br, I) have been prepared by oxidative halogenation of carbonylniobate with pyridinium halides (Hal = Cl, Br) or iodine (Hal = I). In the tricarbonyls, one CO and one PR3 are labile and can be displaced by a four-electron donating alkyne to give all-trans-[(Hal)Nb(CO)2(RCCR′)(PR3)2] (PR3 = PMe2Ph; Hal = Cl, Br, I: R, R′ = H, Et, Ph; R = H, R′ = Ph. PR3 = PEt3, Hal = I: R, R′ = Pr; R = H, R′ = Bu, Ph; R = Me, R′ = Et). In the case of acetylene, INb(CO)(HCCH)2(PEt3)2 is also formed. PR3 can be displaced by P(OMe) 3. In the tetracarbonyls, two CO ligands are replaced by two isonitriles to form INb(CO)2(CNR)2dppe (R = tBu, Cy), or by one alkyne to form (Hal)Nb(CO)2(PhCCPh)dppe (Hal = Br, I). In these complexes, the remaining CO ligands occupy cis positions. The structure of BrNb(CO)2(dppe)2·THF, INb(CO)2(dppe)2·hexane and INb(CO)2(PEt3)2(MeCCEt) have been determined by a single crystal X-ray diffraction study. The alkyne complexes are best regarded as octahedral with the centre of the alkyne ligand occupying the positions trans to the halide and the CC axis aligned with the OC---Nb---CO axis. The complexes (Hal)Nb(CO)2(dppe)2 adopt a trigonal prismatic structure with the halide capping the tetragonal face spanned by the four phosphorus functions. The crystal structure of a by-product, Br2Nb(CO)(H2CPhPCH2CH2PPh2)2·1/2THF has also been determined. The geometry is pentagonal bipyramidal, with one of the bromine atoms and the CO on the axis. Some 93 Nb NMR data for the NbI complexes are presented, and preliminary observations on the reactions between the π-alkyne complexes and H2 or H are reported.  相似文献   

9.
Abstract— Laser flash photolysis of trans -[Rh(dppe)2X2][PF6] (X=Br and I; dppe=bis(diphenylphosphino)ethane) in CH2Cl2 or CH3CN produces the d7 Rh(II) radicals, [Rh(dppe)2X]+, and halogen atoms. The kinetics of the disappearance of [Rh(dppe)2X]+ radicals in CH2Cl2 or CH3CN were mixed order: H-atom abstraction from solvent to produce the rhodium hydrides, [RhH(dppe)2X][PF6], and Rh/X recombination. In the poor H-atom donor solvent, benzonitrile, Rh/Br recombination was observed to be uncomplicated by competing H-atom abstraction. The hydride complexes [RhH(dppe)2X][PF6], formed by H-atom abstraction were completely characterized by 31P{1H}-NMR, 1H-NMR, and mass specrometry. Cyclohexene was used as an effective trap for photogenerated Br atoms and yielded bromocyclohexane and 3-bromocyclohexene in a relative yield, 1:9. The photochemical mechanism is discussed in light of the transient absorbance and trapping studies.  相似文献   

10.
Hydroformylation of propylene has been carried out in supercritical CO2 + H2O and in supercritical propylene + H2O mixtures using Rh(acac)(CO)2 and triphenylphosphine trisulfonate trisodium salt (TPPTS), P(m-C6H4SO3Na)3, as catalyst. Visual observation of the reaction mixtures indicates that in both systems a single phase is present at supercritical temperatures and pressures so that the reaction occurs under homogeneous conditions. After reaction is complete, a biphasic system is formed when the pressure and temperature are reduced to ambient. This facilitates separation of the products in the organic phase and the rhodium catalyst in the aqueous phase. The rhodium concentration in the organic phase was found to be negligible (1.0 × 10−6 mg/ml). Furthermore, compared with traditional hydroformylation technology, the supercritical reactions also show better activity and selectivity.  相似文献   

11.
The reaction of the anionic mononuclear rhodium complex [Rh(C6F5)3Cl(Hpz)]t- (Hpz = pyrazole, C3H4N2) with methoxo or acetylacetonate complexes of Rh or Ir led to the heterodinuclear anionic compounds [(C6F5)3Rh(μ-Cl)(μ-pz)M(L2)] [M = Rh, L2 = cyclo-octa-1,5-diene, COD (1), tetrafluorobenzobarrelene, TFB (2) or (CO)2 (4); M = Ir, L2 = COD (3)]. The complex [Rh(C6F5)3(Hbim)] (5) has been prepared by treating [Rh(C6F5)3(acac)] with H2bim (acac = acetylacetonate; H2bim = 2,2′-biimidazole). Complex 5 also reacts with Rh or Ir methoxo, or with Pd acetylacetonate, complexes affording the heterodinuclear complexes [(C6F5)3Rh(μ-bim)M(L2)] [M = Rh, L2 = COD (6) or TFB (7); M = Ir, L2 = COD (8); M = Pd, L2 = η3-C3H5 (9)]. With [Rh(acac)(CO)2], complex 5 yields the tetranuclear complex [{(C6F5)3Rh(μ-bim)Rh(CO)2}2]2−. Homodinuclear RhIII derivatives [{Rh(C6F5)3}2(μ-L)2]·- [L2 = OH, pz (11); OH, StBu (12); OH, SPh (13); bim (14)] have been obtained by substitution of one or both hydroxo groups of the dianion [{Rh(C6F5)3(μ-OH)}2]2− by the corresponding ligands. The reaction of [Rh(C6F5)3(Et2O)x] with [PdX2(COD)] produces neutral heterodinuclear compounds [(C6F5)3Rh(μ-X)2Pd(COD)] [X = Cl (15); Br (16)]. The anionic complexes 1–14 have been isolated as the benzyltriphenylphosphonium (PBzPh3+) salts.  相似文献   

12.
The compound [RU332- -ampy)(μ3η12-PhC=CHPh)(CO)6(PPh3)2] (1) (ampy = 2-amino-6-methylpyridinate) has been prepared by reaction of [RU3(η-H)(μ32- ampy) (μ,η12-PhC=CHPh)(CO)7(PPh3)] with triphenylphosphine at room temperature. However, the reaction of [RU3(μ-H)(μ3, η2 -ampy)(CO)7(PPh3)2] with diphenylacetylene requires a higher temperature (110°C) and does not give complex 1 but the phenyl derivative [RU332-ampy)(μ,η 12 -PhC=CHPh)(μ,-PPh2)(Ph)(CO)5(PPh3)] (2). The thermolysis of complex 1 (110°C) also gives complex 2 quantitatively. Both 1 and 2 have been characterized by0 X-ray diffraction methods. Complex 1 is a catalyst precursor for the homogeneous hydrogenation of diphenylacetylene to a mixture of cis- and trans -stilbene under mild conditions (80°C, 1 atm. of H2), although progressive deactivation of the catalytic species is observed. The dihydride [RU3(μ-H)232-ampy)(μ,η12- PhC=CHPh)(CO)5(PPh3)2] (3), which has been characterized spectroscopically, is an intermediate in the catalytic hydrogenation reaction.  相似文献   

13.
The reaction of K[H6ReL2] with [RuHCl(CO)(PPh3)3−x {P(OPri}3)x](L2 = (PMePh2)2, dppe, (AsPh3)2, or (PPh3)2; x = 0, 1 or 2) leads to [L2(CO)HRe(μ-H)3RuH(PPh3)2−y{P(OPri)3}y] (x = 0 or 1, Y = 0; X = 2, Y = 1(L2 = PPh3)) in a first step. Under the reaction conditions most of these complexes react rapidly with the liberated phosphine giving [L2(CO)Re(μ-H)3Ru(PPh3)3−y- {P(OPri)3}y] (L2 = (PMePh2)2 or dppe, Y = 0; L2 = (PPh3)2, Y = 1) as the only iso complexes. The structure of [(PMePh2)2(CO)Re(μ-H)3Ru(PPh3)3] has been establishedby X-ray structure analysis. The complex [(PPh3)2(CO)Re(μ-H)3Ru(PPh3)2(P(OPri)3)] reacts with molecular hydrogen under pressure to generate [L2(CO)HRe(μ-H)3RuH(PPh3)(P(OPri)3) as the sole product.  相似文献   

14.
Three interpenetrated polymeric networks, {[Co(bpp)(OH-BDC)] · H2O}n (1) [Ni(bpp)1.5(H2O)(OH-BDC)]n (2) and {[Cd(bpp)(H2O)(OH-BDC)] · 2H2O}n (3), have been prepared by hydrothermal reactions of 1,3-bis(4-pyridyl)propane (bpp), 5-hydroxyisophthalic acid (OH-H2BDC), with Co(NO3)2 · 6H2O, Ni(NO3)2 · 6H2O and Cd(NO3)2 · 4H2O, respectively. Single-crystal X-ray diffraction analyses reveal that the three compounds all exhibit interpenetrated but entirely different structures. Compound 1 is a fourfold interpenetrated adamantanoid structure with water molecules as space fillers, in which bpp adopts a TG conformation (T = trans, G = gauche). Compound 2 is an interdigitated structure from the interpenetrated long arms of one-dimensional molecular ladders, while bpp in 2 adopts both TT and TG conformations. Compound 3 is a twofold interpenetrated three-dimensional network from a one-dimensional metal-carboxylate chain bridged by TG conformational bpp. The hydrogen bonding interactions in 1–3 further stabilize the whole structural frameworks and play critical roles in their constructions.  相似文献   

15.
Six mononuclear complexes [M(L1)2(H2O)4] (M = Co(II), 1a and M = Mn(II), 1b), [Cu(L1)2(H2O)2] (1c), [Cu(L1)2(H2O)(Py)2] (1d), [Cu(L3)(H2O)Cl] · H2O (3a) and [Co(Sal)(H2O)(Py)3] · 2ClO4 · H2O (3b) of phenoxyacetic acid derivatives and Schiff base were determined by single crystal X-ray diffraction. The Co(II) (1a) and Mn(II) (1b) complexes are isomorphous. X-ray crystal structural analyses reveal that these coordination complexes form polymeric structure via formation of different types of hydrogen bonding and π-stacking interactions in solid. Thermal analysis along with the powder X-ray diffraction data of these complexes shows the importance of the coordinated and/or crystal water molecules in stabilizing the MOF structure. Complexes 1a, 1c, 3a show marginal catalytic activity in the oxidation of olefins to epoxides in the presence of i-butyraldehyde and molecular oxygen.  相似文献   

16.
Hydrogenation of acetophenone, 2-butanone, styrene and 1-hexene over Rh---Sn/SiO2 in heterogeneous liquid phase reaction systems was studied by in situ EXAFS, FT-IR, TEM, analytical TEM, CO and H2 adsorption measurements. The catalytic activity of Rh/SiO2 for hydrogenation of acetophenone and 2-butanone increased by a factor of 5–500 by Sn addition, showing a maximum activity at surface composition Sns/Rhs = 1.5, whereas hydrogenation of styrene and 1-hexene decreased monotonously and drastically by Sn addition. In situ Sn K-edge EXAFS of the well characterized CVD-Rh---Sn/SiO2 catalyst prepared by using Sn(CH3)4 vapor suggested that oxygen of C=O group makes a bond with Sn atom upon acetophenone adsorption.  相似文献   

17.
Synthesis, structure, spectroscopy and thermal properties of complex [Co(NCS)2(hmt)2(H2O)2][Co(NCS)2(H2O)4] (H2O) (I), assembled by hexamethylenetetramine and octahedral Co(II) metal ions, are reported. Crystal data for I: Fw 387.34, a=9.020(8), b=12.887(9), c=7.95(1) Å, =96.73(4), β=115.36(5), γ=94.16(4)°, V=820(1) Å3, Z=2, space group=P−1, T=173 K, λ(Mo-K)=0.71070 Å, ρcalc=1.718567 g cm−3, μ=17.44 cm−1, R=0.088, Rw=0.148. An interesting two-dimensional network is assembled via hydrogen bonds through coordinated and free water molecules. The d–d transition energy levels of Co(II) ion are determined by UV–vis spectroscopy and calculated by ligand field theory. The calculated results agree well with experiment ones.  相似文献   

18.
A new nitronyl nitroxide NIT2-bithph (1) and its manganese(II) compound [Mn(hfac)2(IMHBithph)]2·(NIT2-bithph)(C6H14) (2) (hfac = hexafluoroacetylacetonate; NIT2-bithph = 4,4,5,5-tetramethyl-2-(bithiophenal-2-yl)imidazoline-1-oxyl-3-oxide; IMHBithph = 1-hydroxy-2-bithiophenal-4,4,5,5-tetramethyl-4,5-dihydro- 1H-imidazole) have been synthesized and structurally characterized by X-ray diffraction methods. The units of compound 1 were connected as one-dimensional chain by the intermolecular hydrogen bonds which afford an intermolecular antiferromagnetic interaction between nitronyl nitroxide radicals within the chain (J = −1.89 cm−1). Compound 2 resulting from the reaction of Mn(hfac)2·2H2O and NIT2-bithph is dinuclear and includes the reduced amidino-oxide form of NIT2-bithph, it is made up of three parts: a [Mn(hfac)2(IMHBithph)]2 dimer unit, an uncoordinated NIT2-bithph radical and a noncoordinated solvent molecule of hexane, the molecule of radical is hydrogen bonded to its reduced form. Two reduced IMHBithph ligands bridge the two manganese(II) ions through their amidino-oxide oxygen atoms resulting in a small intramolecular antiferromagnetic interaction between the manganese ions (J = −1.55 cm−1).  相似文献   

19.
Asymmetric hydroformylation of styrene by rhodium catalysts modified with aminophosphinephosphinite ligands has been studied. Use of either Rh4(CO)12/L2 mixture or RhClCOL2 in electroreduction under CO/H2, gives interesting results in respect of regio- (PhCHMeCHO/PHCH2CH2CHO) and enantio-selectivity when the ligands (1R,2S)-PPh2NMeCHMeCHPhOPPh2 and (CH3)2C(N(Me)PPh2)-HCH2OPPH2 (e.e. > 30%) are used.

1H and 31P NMR spectroscopy has indicated the occurrence of the RhH(CO)2L2 hydride precursor, suggested to be responsible for catalysis. It is a trigonal complex having an aminophosphine function in a trans position to the hydrogen, the equatorial position being occupied by the (P---O) group and the two CO moieties.  相似文献   


20.
[Re2(Ala)4(H2O)8](ClO4)6 (Re=Eu, Er; Ala=alanine) were synthesized, and the low-temperature heat capacities of the two complexes were measured with a high-precision adiabatic calorimeter over the temperature range from 80 to 370 K. For [Eu2(Ala)4(H2O)8](ClO4)6, two solid–solid phase transitions were found, one in the temperature range from 234.403 to 249.960 K, with peak temperature 243.050 K, the other in the range from 249.960 to 278.881 K, with peak temperature 270.155 K. For [Er2(Ala)4(H2O)8](ClO4)6, one solid–solid phase transition was observed in the range from 270.696 to 282.156 K, with peak temperature 278.970 K. The molar enthalpy increments, ΔHm, and entropy increments,ΔSm, of these phase transitions, were determined to be 455.6 J mol−1, 1.87 J K−1 mol−1 at 243.050 K; 2277 J mol−1, 8.43 J K−1 mol−1 at 270.155 K for [Eu2(Ala)4(H2O)8](ClO4)6; and 4442 J mol−1, 15.92 J K−1 mol−1 at 278.970 K for [Er2(Ala)4(H2O)8](ClO4)6. Thermal decompositions of the two complexes were investigated by use of the thermogravimetric (TG) analysis. A possible mechanism for the thermal decomposition is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号