首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The oxidation-reduction reaction between U(VI) and Ti(III) in HCl solution was studied spectrophotometrically. The reaction is second-order at all concentrations of reactants, HCl, ferrous chloride and mannitol used in this work. In 5M HCl the rate constantk increases with increasing Ti(III) concentration, whereas it decreases with increasing U(VI) concentration, with increasing HCl concentration from 1.00M to 7.17M and increases thereafter from 7.17M to 11.79M. The addition of mannitol causes a consistent decrease in the rate of reaction, whereas ferrous chloride has no effect. The activation energy for this oxidation-reduction reaction was 47.90±0.11 kJ·mol–1. The values of H , G and S were 45.40±0.11 kJ·mol–1, 72.50±0.17 kJ·mol–1 and –91.10±0.22J·k–1·mol–1, respectively. The mode of reaction is discussed in the light of kinetic results.  相似文献   

2.
The kinetics of acid-catalyzed hydrolysis of the [Co(en)(L)2(O2CO)]+ ion (L = imidazole, 1-methylimidazole, 2-methylimidazole) follows the rate law –d[complex]/dt = {k 1 K[H+]/(1 + K[H+])}[complex] (15–30 or 25–40 °C, [H+] = 0.1–1.0 M and I = 1.0 M (NaClO4)). The reaction course consists of a rapid pre-equilibrium protonation, followed by a rate determining chelate ring opening process and subsequent fast release of the one-end bound carbonato ligand. Kinetic parameters, k 1 and K, at 25 °C are 5.5 × 10–2 s–1, 0.44 M–1 (ImH), 5.1 × 10–2 s–1, 0.54 M–1 (1-Meim) and 3.8 × 10–3 s–1, 0.74 M–1 (2-MeimH) respectively, and activation parameters for k 1 are H1 = 43.7 ± 8.9 kJ mol–1, S1 = –123 ± 30 J mol–1 deg–1 (ImH), H1 = 43.1 ± 0.3 kJ mol–1, S1 = –125 ± 1 J mol–1 deg–1 (1-Meim) and H1 = 64.2 ± 4.3 kJ mol–1, S1 = –77 ± 14 J mol–1 deg–1 (2-MeimH). The results are compared with those for similar cobalt(III) complexes.  相似文献   

3.
The title reaction has been studied spectrophotometrically in aqueous medium as a function of [substrate complex], [ligand], pH and temperature at constant ionic strength. At the physiological pH (7.4) the interaction with azide shows two distinct consecutive steps, i.e., it shows a non-linear dependence on the concentration of N3 ; both processes are [ligand]-dependent. The rate constant for the processes are: k 110–3 s–1 and k 210–5 s–1. The activation parameters calculated from Eyring plots are: H 1 = 14.8 ± 1 kJ mol–1, S 1 = –240 ± 3 J K–1 mol–1, H 2 = 44.0 ± 1.5 kJ mol–1 and S 2 = –190 ± 4 J K–1 mol–1. Based on the kinetic and activation parameters an associative interchange mechanism is proposed for the interaction process. From the temperature dependence of the outersphere association equilibrium constant, the thermodynamic parameters calculated are: H 1 0 = 4.4 ± 0.9 kJ mol–1, S 1 0 = 64 ± 3 J K–1 mol–1 and H 2 0 = 14.2 ± 2.9 kJ mol–1, S 2 0 = 90 ± 9 J K–1 mol–1, which gives a negative G 0 value at all temperatures studied, supporting the spontaneous formation of an outersphere association complex.  相似文献   

4.
Summary The aquation ofcis-[(en)2Co(CO2H)2]+ tocis-[(en)2Co(OH2)(CO2H)]2+ is catalysed by Cu2+ and the rate equation, –d[complex]t/dt=(kCu[Cu2+]+kH [H+]) [complex)T is valid at [Cu2+]T=0.01–0.1, I=0.5 and [HClO4]=0.005 mol dm–3. The rate measurements are reported at 30, 35, 40 and 45°C and the rate and activation parameters for the Cu2+ and H+-catalysed paths are: kH(35°C)=(2.44±0.09)×10–2 dm3 mol–1 s–1, H=83±13 kJ mol–1, S=–8±42 JK–1 mol–1, k Cu (35°C)=(3.30±0.09)×10–3 dm3 mol–1 s–1, H=73.2±6.1 kJ mol–1, S=–55±20 JK–1 mol–1. The formate-bridged innersphere binuclear complex,cis-[(en)2Co{(O2CH)2Cu}]3+ may be involved as the catalytically active intermediate in the copper(II)-catalysed path, just as the corresponding H+-bridged species presumed to be present in the acidcatalysed path.  相似文献   

5.
A detailed investigation of the oxidation of L-ascorbic acid (H2A) by the title complex has been carried out using conventional spectrophotometry at 510 nm, over the ranges: 0.010 [ascorbate] T 0.045 mol dm–3, 3.62 pH 5.34, and 12.0 30.0 °C, 0.50 I 1.00 mol dm–3, and at ionic strength 0.60 mol dm–3 (NaClO4). The main reaction products are the bis(pyridine-2,6-dicarboxylate)cobaltate(II) ion and l-dehydroascorbic acid. The reaction rate is dependent on pH and the total ascorbate concentration in a complex manner, i.e., k obs = (k 1 K 1)[ascorbate] T /(K 1 + [H+]). The second order rate constant, k 1 [rate constant for the reaction of the cobalt(III) complex and HA] at 25.0 °C is 2.31 ± 0.13 mol–1 dm3 s–1. H = 30 ± 4 kJ mol–1 and S = –138 ± 13 J mol–1 K–1. K 1, the dissociation constant for H2A, was determined as 1.58 × 10–4 mol dm–3 at an ionic strength of 0.60 mol dm–3, while the self exchange rate constant, k 11 for the title complex, was determined as 1.28 × 10–5 dm3 mol–1 s–1. An outer-sphere electron transfer mechanism has been proposed.  相似文献   

6.
Summary The interaction of aquo-ethylenediaminetetraacetatoruthenate(III) with ferricyanide ion was studied spectrophotometrically as a function of ferricyanide ion concentration, pH (1.5–8.5) and temperature (30–45°C) at ionic strength 0.2 M (NaClO4). Kinetic and activation parameters (H=27.1±1.75 KJ mol–1, S=–136.7±5.57 J mol–1 deg–1) are consistent with the proposed mechanism.  相似文献   

7.
Summary The kinetics of the reaction betweencis-dichlorobisbipyridineruthenium(II) and nitric acid have been investigated spectrophotometrically in the 25°–40° range in the presence of 0.03 to 0.2 mol dm–3 HNO3. The reaction proceeds with the stepwise formation of monoaqua and diaqua products. Only the formation of the monoaqua intermediate was followed as this species could not be obtained in a pure state. Aquation proceeds through a dissociative process. The second order rate constants are 11.8 (25°), 17.5 (30°); 30.0 (35°) l mol–1 s–1. Activation parameters are H 52±3 kJ mol–1; S–108±8 JK–1 mol–1.  相似文献   

8.
Summary Base hydrolysis of the bis(ethylenediamine)thiosulphatocobalt(III) was investigated spectrophotometrically between 35 and 65 °C and with base concentrations (NaOH) up to 2.0 mol dm–3. The hydrolysis consists of a one-stage reaction, followed by a slow dechelation step, and then by a fast ligand loss. The reaction is base-dependent. The products of the reaction are an equilibrium mixture ofcis- andtrans-Coen2 (OH) 2 + . Activation parameters for the reaction as determined by the Eyring equation, are H=77.8±4.6 kJ mol–1 and S=–75±20 JK–1 mol–1.  相似文献   

9.
The reaction between CrVI and 12-tungstocobaltate(II) was carried out in 2.0 mol dm–3 HCl and followed a simple second order rate law. The reaction was catalysed by hydrogen ion due to the formation of active H2CrO4 and was inhibited by chloride ion as, in its presence, conversion of the active species into inactive chlorochromate occurs. Chromium(V) and chromium(IV) were generated in situ by the use of CrVI—VIV or CrVI—2-ethyl-2-hydroxybutyric acid and CrVI—i-PrOH reactions respectively, and the oxidation of 12-tungstocobaltate(II) by these atypical oxidation states, was also studied. The rate constants for the oxidation of 12-tungstocobaltate(II) by CrVI, CrV and CrIV were found to be in the ratio 1:1.2:5.2 respectively. The ionic strength did not affect the reaction, while decrease in the solvent polarity increased the rate of the reaction. The activation parameters were also determined and the values H , G and S were found to be 52.4 ± 6 kJ mol–1, 100.8 ± 7 kJ mol–1, –151.7 ± 10 J K–1 mol–1 respectively, supporting the mechanism proposed.  相似文献   

10.
The solubility, solubility product and the thermodynamic functions for the CeF3–H2O system have been measured using the radiometric, conductometric and potentiometric techniques. The radiometric values for the solubility and solubility product, the lowest and more acceptable for reasons cited in previous papers, are 3.14·10–5 M and 2.17·10–17 respectively. The enthalpy change measured by the conductometric method is almost twice as that obtained by potentiometric method due to abnormal conductances registered at higher temperatures. The average values for Ho and Go and So at 298 K are 53.0±17.4, 91.7±4.0 and –129.7±58.2 KJ·mol–1 respectively. The positive values for Ho and Go and the negative value for So are indicative of the low solubility of this salt in water. The stability constants for the mono- and difluoride complexes of Ce(III) have been determined potentiometrically using unsaturated solution mixtures of Ce(III) and F. These values for CeF+ and CeF 2 + are 997±98 and (1.03±0.44)·105, respectively. Studies on pH dependence of the solubility shows that the solubility reaches a minimum value at a pH of about 3.2.  相似文献   

11.
The kinetics of the interaction of DL-penicillamine with [Pt(en)(H2O)2]2+ have been studied spectrophotometrically as a function of [Pt(en)(H2O)2]2+, [DL-penicillamine] and temperature at pH 4.0. The reaction proceeds via rapid outer sphere association complex formation, followed by two slow consecutive steps. The first is the conversion of the aforementioned complex into the inner sphere complex and the second is the slower chelation step whereby another aqua ligand is replaced. The association equilibrium constant (K E) for the outer sphere complex formation has been evaluated together with rate constants for the two subsequent steps. Activation parameters have been calculated for both steps using the Eyring equation (H 1 = 46.5 ± 5.0 kJ mol–1, S 1 = – 143.0 ± 15.0 J K–1 mol–1, H 2 = 44.3 ± 1.3 kJ mol–1, S 2 = –189.0 ± 4.2 J K–1 mol–1). The low enthalpy of activation and large negative entropy of activation values indicate an associative mode of activation for both aqua ligand substitution processes.  相似文献   

12.
Activation parameters of the interconversion of geometric isomers6a and6b were determined by a complete lineshape analysis of the temperature-dependent13C NMR spectra of 7,8-dipropyl-7-borabicyclo[4.2.2]deca-2,4,9-triene (6). For the reaction6a 6b, G 298 = 52.2±0.1 kJ mol–1, H = 27.9±0.5 kJ mol–1, S = –82±8 J mol–1 K–1; For the reaction6b 6a, G 298 = 52.6±0.1 kJ mol–1, H = 24.7±0.5 kJ mol–1, S = –93±10 J mol–1 K–1. The interconversion of deuteropyridine complexes9a and9b proceedsvia their dissociation, which indicates that the rearrangement of borane6 occurs according to the [1,3]-B shift mechanism.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 2243–2250, September, 1996.  相似文献   

13.
The kinetics of the interaction of adenosine 5-monophosphate (5-AMP) with cis-[Pt(en)(H2O)2]2+ have been studied spectrophotometrically as a function of [Pt(en)(H2O)2]2+, [5-AMP] and temperature at pH 4.0, where the substrate complex exists predominantly as the diaqua species. Both N1 and N7 donor sites of 5-AMP are active for coordination to Pt at this pH. Base stacking and metal-induced macrochelate formation of 5-AMP plays a vital role in determining the concentration limit of 5-AMP during kinetics. Substitution occurs in two consecutive steps; both dependent on the 5-AMP concentration. Activation parameters for both steps have been calculated. The low H 1 (42.76 ± 1.64 kJ mol–1) and large negative values of S 1 (–112.1 ± 5.1 J K–1 mol–1) as well as H 2 (58.1 ± 1.4 kJ mol–1) and S 2 (–84.2 ± 4.4 J K–1 mol–1) indicate associative modes of activation for both ligand substitution processes in the two consecutive steps.  相似文献   

14.
Summary The reversible complex formation between 2-(2-aminoethyl) benzimidazole (AEB) and nickel(II) was studied by stopped flow spectrophotometry at I = 0.30 mol dm–3. Both the neutral and monoprotonated form of AEB reacted to give the NiAEB2+ chelate. At 25 °C, the rates and activation parameters for the reactions NiII + AEB NiAEB2+ and NiII + AEBH+ NiAEB2+ + H+ are k f L(dm–3 mol–1 s–1) = (2.17 ± 0.24) × 103, H (kJ mol–1) = 40.0 ± 0.8, S (JK–1 mol–1) = – 47 ± 3 and k inff pHL (dm3 mol–1 s–1) = 33 ± 10, H (kJ mol–1) = 42.0 ±2.7, S (JK–1 mol–1) = – 72 ± 9. The dissociation of NiAEB2+ was acid catalysed and k obs for this process increased linearly with [H+] in the 0.01–0.15 mol dm–3 (10–30 °C) range with k H(dm3 mol–1s–1) (25 °C) = 329 ± 6, H (kJ mol–1) = 40 ± 2 and S (JK–1 mol–1) = – 61 ± 8. The results also indicated that the formation of NiAEB2+ involves a chelation-controlled, rate-limiting process. Analysis of the S ° data for the acid ionisation of AEBH inf2 p2+ and the formation of NiAEB2+ showed that the bulky AEBH+ ion has a solvent structure breaking effect as compared to AEB [s aqS ° (AEBH+) – s aq ° (AEB) = 69 JK–1 mol–1], while AEBH inf2 p2+ is a solvent ordering ion relative to NiAEB2+ [s aq° (NiAEB2+) – ovS aq ° (AEBH inf2 p2+ ) = 11 JK–1 mol–1].Author to whom all correspondence should be directed.  相似文献   

15.
The kinetics of interaction between DL-Penicillamine and [Rh(H2O)5OH]2+ have been studied spectrophotometrically as a function of [Rh(H2O)5OH2+], [DL-Pen], pH and temperature. The reaction has been monitored at 242 nm, the max of the substituted complex and where the spectral difference between the reactant and product is a maximum. The reaction rate increases with [DL-Pen] and reaches a limiting value at a higher ligand concentration. From the experimental findings an associative interchange mechanism for the substitution process is suggested. The activation parameters (H}=35.8 ± 1.6 kJ mol–1, S=–209 ± 5 J K–1 mol–1) support the proposition. The negative G 0 (–13.6 kJ mol–1) for the first equilibrium step also supports the spontaneous formation of an outersphere association complex.  相似文献   

16.
The interaction of thymidine, a nucleoside, with hydroxopentaaquarhodium(III), [Rh(H2O)5(OH)]2+ ion in aqueous medium is reported and the possible mode of binding is discussed. The kinetics of interaction between thymidine and [Rh(H2O)5OH]2+ has been studied spectrophotometrically as a function of [Rh(H2O)5OH2+], [thymidine], pH and temperature. The reaction has been monitored at 298 nm, the max of the substituted complex, and where the spectral difference between the reactant and product is a maximum. The reaction rate increases with [thymidine] and reaches a limiting value at a higher ligand concentration. From the experimental findings an associative interchange mechanism for the substitution process is suggested. The activation parameters (H=47.8 ± 5.7 kJ mol–1, S=–173 ± 17 J K–1 mol–1) supports our proposition. The negative G0 (–13.8 kJ mol–1) for the first equilibrium step also supports the spontaneous formation of the outer sphere association complex.  相似文献   

17.
Summary The oxidation of MeCHO by chromium(VI) has been studied in HClO4 medium over a wide range of experimental conditions and has been found to obey the rate law;v=k[MeCHO][HCrO 4 ][H+]. The calculated H and-S values for the reaction are 30±2kJ mol–1 and 171±7J mol–1deg–1, respectively. The mechanism is discussed in terms of carbon-hydrogen bond cleavage.  相似文献   

18.
Summary The kinetics of CoIII oxidation of SeIV have been studied in aqueous HClO4. The order with respect to Com is two the order with respect to SeIV is one at low concentrations; two at high concentrations. The latter variation is attributed to the greater reactivity of the SeIV dimier A mechanism involving complexation between oxidant and substrate is proposed. [CoOH]2+ is presumed to be the reactive CoIII species and H2SeO3 and HSeO 3 to be those of SeIV. At 25° C, Ea, H and S for the monomeric path are 125.6±4.0 kJ mol–1, 122.1±3.8 kJ mol–1 and 206±12 JK–1 mol–1 respectively and those for the dimeric path are 88.6±3.6 kJ mol–1, 85.9±3.4 kJ mol–1 and 62.6±11.3 JK–1 mol–1 respectively.  相似文献   

19.
Summary Kinetic studies of the anation of the title complex by NO 2 show that it occurs in a stepwise manner leading to thecis-dinitro-complex both steps having a common rate equation:-d[complex]/dt = a[NO 2 ]/{[NO 2 ] + b}. The variation ofpseudo-first-order rate constant (kobs) with [NO 2 ] indicates that the reaction proceeds through ion-pair interchange path. Activation parameters calculated by the Eyring equation are: H 1 = (65±7) kJ mol–1 and S 1 = (–82±11) JK–1 mol–1 for the formation of [Co(NH3)4(NO2)(H2O)]2+, and H 2 = (97±1) kJ mol–1 and S 2 = (6±2) JK–1 mol–1 for the formation of [Co(NH3)4(NO2)2]+. Anation of the title complex by N 3 at pH 4.1 also occurs in a stepwise manner ultimately producing thecis-diazido species. At a fixed pH the reaction shows a first-order dependence on [N 3 ] for each step. pH-variation studies at a fixed [N 3 ] show that the hydroxoaqua-form of the complex reactsca. 16 times faster than the diaqua form. Evidence is presented for an ion-pair preequilibrium at high ionic strength (I = 2.0 mol dm–3). Activation parameters obtained from temperature variation studies are: H 1 = (121±1) kJ mol–1 and S 1 = (104±3) JK–1 mol–1 (for the first step anation), and H 2 = (111±2) kJ mol–1 and S 2 = (74±9) JK–1 mol–1 (for the second step anation). The reaction ofcis-tetraaminediaquacobalt(III) ion with salicylate (HSal) has been studied in aqueous acidic medium in the temperature range 39.8–58.2°C. The reaction is biphasic corresponding to the anation of two salicylate ions. The kinetic results for the first phase reaction are compatible with the equation: kobs = kIPQ[HSal]/(1 + Q[HSal]) where Q denotes ion-pair formation constant and kIP is the first-order rate constant for the interchange reaction. The activation parameters obtained from the temperature dependence of rate are: H = (138±3) kJ mol–1 and S = (135±4) JK–1 mol–1. The reaction seems to take place by a dissociative interchange mechanism.  相似文献   

20.
We have synthesized the organic conductor (BEDT-TTF)AgXIY (X 1.8 and Y 2.9). This compound has, in addition to high electronic conductivity (300 k 5–10 –1 · cm–1), significant ionic conductivity connected with the motion of silver ions. The value of this ionic conductivity at room temperature is 10–3 –1 · cm–1. The activation energy for diffusion of Ag ions is equal to 0.2 eV.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 25, No. 2, pp. 247–249, March–April, 1989.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号