首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the growth of Ag on Ge/Si(1 1 1) substrates. The Ge/Si(1 1 1) substrates were prepared by depositing one monolayer (ML) of Ge on Si(1 1 1)-(7 × 7) surfaces. Following Ge deposition the reflection high energy electron diffraction (RHEED) pattern changed to a (1 × 1) pattern. Ge as well as Ag deposition was carried out at 550 °C. Ag deposition on Ge/Si(1 1 1) substrates up to 10 ML has shown a prominent (√3 × √3)-R30° RHEED pattern along with a streak structure from Ag(1 1 1) surface. Scanning electron microscopy (SEM) shows the formation of Ag islands along with a large fraction of open area, which presumably has the Ag-induced (√3 × √3)-R30° structure on the Ge/Si(1 1 1) surface. X-ray diffraction (XRD) experiments show the presence of only (1 1 1) peak of Ag indicating epitaxial growth of Ag on Ge/Si(1 1 1) surfaces. The possibility of growing a strain-tuned (tensile to compressive) Ag(1 1 1) layer on Ge/Si(1 1 1) substrates is discussed.  相似文献   

2.
Y. Fukaya  A. Kawasuso 《Surface science》2006,600(16):3141-3146
The atomic structure of Si(1 1 1)-√21 × √21-Ag surface, which is formed by the adsorption of small amount of Ag atoms on the Si(1 1 1)-√3 × √3-Ag surface, was determined by using reflection high-energy positron diffraction. The rocking curve measured from the Si(1 1 1)-√21 × √21-Ag surface was analyzed by means of the intensity calculations based on the dynamical diffraction theory. The adatom height of the extra Ag atoms from the underlying Ag layer was determined to be 0.53 Å with a coverage of 0.14 ML, which corresponds to three atoms in the √21 × √21 unit cell. From the pattern analyses, the most appropriate adsorption sites of the extra Ag atoms were proposed.  相似文献   

3.
We use core level photoelectron spectroscopy and density functional theory (DFT) to investigate the iodine-induced Pd(1 1 1)-I(√3 × √3) structure formed at 1/3 ML coverage. From the calculations we find that iodine adsorbs preferentially in the fcc hollow site. The calculated equilibrium distance is 2.06 Å and the adsorption energy is 68 kcal/mol, compared to 2.45 Å and 54 kcal/mol in the atop position. The adsorption energy difference between fcc and hcp hollows is 1.7 kcal/mol. Calculated Pd 3d surface core level shift on clean Pd(1 l 1) is 0.30 eV to lower binding energy, in excellent agreement with our experimental findings (0.28-0.29 eV). On the Pd(1 1 1)-I(√3 × √3) we find no Pd 3d surface core level shift, neither experimentally nor theoretically. Calculated charge transfer for the fcc site, determined from the Hirshfeld partitioning method, suggests that the iodine atom remains almost neutral upon adsorption.  相似文献   

4.
P. Mutombo  V. Cháb 《Surface science》2009,603(4):590-596
Density functional theory calculations have been performed to determine the adsorption site of carbon at the Si(1 1 1):As and Si(1 1 1):H surfaces at different coverages. The As- and H-passivated surfaces were simulated by replacing the topmost Si layer by As or by saturating the Si dangling bonds with hydrogen atoms, respectively. Different high symmetry sites were considered. Carbon was placed successively in the fourfold (T4) or threefold coordinated (H3), the ontop (T1) sites or substituted for a Si atom in the S5 position located underneath the Si adatom in the T4 site. We found that the preferred carbon adsorption site depends on the coverage of the passivated surfaces. At low coverages i.e. at 1/16 ML and 1/3 ML, it prefers a distorted T4 position whereas at 1 ML, it occupies an H3 site. This contrasts with the clean surface where the most energetically favored site is the S5 at all coverages. Carbon adsorption induces a significant change in the structural geometry of the surface atoms, leading to a charge re-arrangement in the surface layers.  相似文献   

5.
We studied the low temperature (T ? 130 K) growth of Ag on Si(0 0 1) and Si(1 1 1) flat surfaces prepared by Si homo epitaxy with the aim to achieve thin metallic films. The band structure and morphology of the Ag overlayers have been investigated by means of XPS, UPS, LEED, STM and STS. Surprisingly a (√3 × √3)R30° LEED structure for Ag films has been observed after deposition of 2-6 ML Ag onto a Si(1 1 1)(√3 × √3)R30°Ag surface at low temperatures. XPS investigations showed that these films are solid, and UPS measurements indicate that they are metallic. However, after closer STM studies we found that these films consists of sharp Ag islands and (√3 × √3)R30°Ag flat terraces in between. On Si(0 0 1) the low-temperature deposition yields an epitaxial growth of Ag on clean Si(0 0 1)-2 × 1 with a twinned Ag(1 1 1) structure at coverage’s as low as 10 ML. Furthermore the conductivity of few monolayer Ag films on Si(1 0 0) surfaces has been studied as a function of temperature (40-300 K).  相似文献   

6.
We have carried out adsorption and residual thermal desorption experiments of Indium on Si (1 1 1) 7 × 7 reconstructed surface, in the submonolayer regime, in Ultra High Vacuum (UHV) using in situ probes such as Auger Electron Spectroscopy (AES) and Low Energy Electron Diffraction (LEED). The coverage information from AES and the surface symmetry from LEED is used to draw a 2D phase diagram which characterizes each observed superstructural phases. The different superstructural phases observed are Si(1 1 1)7 × 7-In, Si(1 1 1)√3 × √3R30°-In, Si(1 1 1)4 × 1-In, Si(1 1 1)2√3 × 2√3R30°-In and Si(1 1 1)√7 × √3-In in characteristic temperature and coverage regime. In addition to the 1/3 ML, √3 × √3-In phase, we observe two additional √3 × √3-In phases at around 0.6 and 1 ML. Our careful residual thermal desorption studies yields the Si(1 1 1)2√3 × 2√3R30°-In phase which has infrequently appeared in the literature. We probe theoretically the structure of this phase according to the LEED structure and coverage measured by AES, assuming that the model for Si(1 1 1)2√3 × 2√3R30°-In is very proximal to the well established Si(1 1 1)2√3 × 2√3R30°-Sn phase, using ab initio calculation based on pseudopotentials and Density Functional Theory (DFT) to simulate an STM image of the system. Calculations show the differences in the atomic position and charge distribution in the Si(1 1 1)2√3 × 2√3R30°-In case.  相似文献   

7.
Y. Fukaya  A. Kawasuso 《Surface science》2007,601(22):5187-5191
The Au adsorption induced √21 × √21 super-lattice structure on the Si(1 1 1)-√3 × √3-Ag structure has been investigated using reflection high-energy positron diffraction. The height of the Au adatom was determined to be 0.59 Å from the underlying Ag layer from the rocking curve analysis with the dynamical diffraction theory. The adatoms were preferentially situated at the center of the large Ag triangle of the inequivalent triangle structure of the Si(1 1 1)-√3 × √3-Ag substrate. From the intensity distribution in the fractional-order Laue zone, the in-plane coordinate of the Au adatoms was obtained.  相似文献   

8.
The electronic structure of the FCC, HCP and 2-fold bridge phases of the (√3 × √3)R30°-Cu2Si/Cu(1 1 1) surface alloy have been investigated using LCAO-DFT. Analysis of the total electron density, partial density-of-states (PDOS) and crystal orbital overlap population (COOP) curves for the system have shown a surprising similarity between the intra- and inter-layer Si-Cu bond for each phase. Low hybridization between the Si 3s and 3p orbitals results in a low directionality of the Si-Cu bond within each of phase. The Si 3s orbitals are shown to form covalent bonds with their surrounding Cu atoms whereas the Si 3p and 3d orbitals are shown to form combinations of covalent and metallic bonds. The Si-Cu interaction is shown clearly to extend to the second layer of the alloy in deference to previous studies of Si/Cu alloys.  相似文献   

9.
The T-θ phase diagram for the system Pb/Si(1 1 1) was determined in the coverage range 6/5 ML < θ < 4/3 ML from complementary STM and SPA-LEED experiments. This coverage is within the range where a “Devil’s Staircase” (DS) has been realized. The numerous DS phases answer conflicting information in the Pb/Si(1 1 1) literature and update the previously published phase diagram. The measurements reveal the thermal stability of the different linear DS phases with the transition temperature found to be a function of phase period. Because of additional complexity in the experimental system (i.e. two-dimensionality and 3-fold symmetry) the linear DS phases transform at higher temperature into commensurate phases of 3-fold symmetry HIC (historically named “hexagonal incommensurate phase”). Different types of HIC phases have been discovered differing in the size of the supercell built out of √3 × √3 domains separated by domain walls of the √7 × √3 phase. The detailed structures of these HIC phases (coverage, binding site, twist angle, etc.) have been deduced from the comparison of STM images and diffraction patterns. After heating the system to even higher temperature the HIC phase transforms into the disordered phase. For sufficiently high coverage a SIC (“striped incommensurate phase” which is also built from √3 × √3 domains but meandering √7 × √3 domain walls) is observed which also disorders at high temperatures.  相似文献   

10.
The (√3 × √3)R30°-Cu2Si/Cu(1 1 1) surface alloy that forms during high temperature dosing of silane (SiH4) on Cu(1 1 1) has been investigated using LCAO-DFT. Simulated STM images have shown that experimental images may be interpreted as a mixed phase system consisting of Si ion cores bound in HCP, FCC and twofold bridge sites with a ratio of 25:25:50 rather than previously proposed models where the Si ion cores were bound in only FCC and HCP sites. The new model is shown to be consistent with previously published NIXSW studies.  相似文献   

11.
The electronic structure of the c(2 × 2)-Si/Cu(0 1 1) surface alloy has been investigated and compared to the structures seen in the three phases of the (√3 × √3)R30°Cu2Si/Cu(1 1 1) system, using LCAO-DFT. The weighted surface energy increase between the alloyed Cu(0 1 1) and Cu(1 1 1) surfaces is 126.7 meV/Si atom. This increase in energy for the (0 1 1) system when compared to the (1 1 1) system is assigned to the transition from a hexagonal to a rectangular local bonding environment for the Si ion cores, with the hexagonal environment being energetically more favorable. The Si 3s state is shown to interact covalently with the Cu 4s and 4p states whereas the Si 3p state, and to a lesser extent the Si 3d state, forms a mixture of covalent and metallic bonds with the Cu states. The Cu 4s and 4p states are shown to be altered by approximately the same amount by both the removal of Cu ion cores and the inclusion of Si ion cores during the alloying of the Cu(0 1 1) surface. However, the Cu 3d states in the surface and second layers of the alloy are shown to be more significantly altered during the alloying process by the removal of Cu ion cores from the surface layer rather than by the addition of Si ion cores. This is compared to the behavior of the Cu 3d states in the surface and second layers of the each phase of the (√3 × √3)R30°-Cu2Si/Cu(1 1 1) alloy and consequently the loss of Cu-Cu periodicity during alloying of the Cu(0 1 1) surface is conjectured as the driving force for changes to the Cu 3d states. The accompanying changes to the Cu 4s and 4p states in both the c(2 × 2)-Si/Cu(0 1 1) and (√3 × √3)R30°-Cu2Si/Cu(1 1 1) alloys are quantified and compared. The study concludes with a brief quantitative study of changes in the bond order of the Cu-Cu bonds during alloying of both Cu(0 1 1) and Cu(1 1 1) surfaces.  相似文献   

12.
We report on the fabrication of single phase of the Si(1 1 1)-(√31 × √31)-In reconstruction surface, observed by scanning tunneling microscopy (STM) at room temperature. By depositing specific amounts of indium atoms while heating the Si(1 1 1)-(7 × 7) substrate at a critical temperature, the single phase of Si(1 1 1)-(√31 × √31)-In surfaces could be routinely obtained over the whole surface with large domains. This procedure is certified by our high-resolution STM images in the range of 5-700 nm. Besides, the high resolution STM images of the Si(1 1 1)-(√31 × √31)-In surface were also presented.  相似文献   

13.
The first stages of acetylene reaction with the Si(1 1 1)7 × 7 reconstructed surface kept at 600 °C are studied by recording scanning tunneling microscopy (STM) images during substrate exposure at a C2H2 pressure of 2 × 10−4 Pa (2 × 10−2 mbar). We observed the progressive substitution of the 7 × 7 reconstruction with a carbon induced Si(1 1 1)√3×√3R30° reconstruction characterized by an atomic distance of 0.75 ± 0.02 nm, very close to that of the silicon 7 × 7 adatoms. This means that a carbon enrichment of the silicon outermost layers occurs giving rise to the formation of a Si-C phase different from the √3×√3R30° reconstruction typical of Si terminated hexagonal SiC(0 0 0 1) surface with an atomic distance of 0.53 nm. To explain STM images, we propose a reconstruction model which involves carbon atoms in T4 and/or S5 sites, as occurring for B doped Si(1 1 1) surface. Step edges and areas around the silicon surface defects are the first regions involved in the reaction process, which spreads from the upper part of the step edges throughout the terraces. Step edges therefore, progressively flakes and this mechanism leads, for the highest exposures, to the formation of large inlets which makes completely irregular the straight edge typical of the Si(1 1 1)7 × 7 terraces. These observations indicate that there occurs an atomic diffusion like that driving the meandering effect. Finally, the formation of a few crystallites is shown also at the lowest acetylene exposures. This is the first STM experiment showing the possibility to have carbon incorporation in a Si(1 1 1) matrix for higher amounts than expected, at least up to 1/6 of silicon atomic layer.  相似文献   

14.
Adsorption structures of the pentacene (C22H14) molecule on the clean Si(0 0 1)-2 × 1 surface were investigated by scanning tunneling microscopy (STM) in conjunction with density functional theory calculations and STM image simulations. The pentacene molecules were found to adsorb on four major sites and four minor sites. The adsorption structures of the pentacene molecules at the four major sites were determined by comparison between the experimental and the simulated STM images. Three out of the four theoretically identified adsorption structures are different from the previously proposed adsorption structures. They involve six to eight Si-C covalent chemical bonds. The adsorption energies of the major four structures are calculated to be in the range 67-128 kcal/mol. It was also found that the pentacene molecule hardly hopped on the surface when applying pulse bias voltages on the molecule, but was mostly decomposed.  相似文献   

15.
The adsorption, diffusion and ordering of hydrogen on Pd(1 1 1) was studied by scanning tunneling microscopy in the temperature range of 37-90 K. At low coverage isolated hydrogen atoms were observed. They formed √3×√3-1H islands as the coverage increased. Above 1/3 monolayer (ML) coverage areas of a new phase with √3×√3-2H structure were formed, with both structures coexisting between 1/3 and 2/3 ML. Finally a 1 × 1 structure was formed after high exposures of hydrogen above 50 K, with a coverage close to 1 ML. Atomically resolved images reveal that H binds to fcc hollow sites.  相似文献   

16.
The surface structure of Si(1 1 1)-6 × 1-Ag was investigated using surface X-ray diffraction techniques. By analyzing the CTR scattering intensities along 00 rod, the positions of the Ag and reconstructed Si atoms perpendicular to the surface were determined. The results agreed well with the HCC model proposed for a 3 × 1 structure induced by alkali-metals on a Si(1 1 1) substrate. The heights of the surface Ag and Si atoms did not move when the surface structure changed from Si(1 1 1)-√3 × √3-Ag to Si(1 1 1)-6 × 1-Ag by the desorption of the Ag atoms. From the GIXD measurement, the in-plane arrangement of the surface Ag atoms was determined. The results indicate that the Ag atoms move large distances at the phase transition between the 6 × 1 and 3 × 1 structures.  相似文献   

17.
The interaction of sulfur with gold surfaces has attracted considerable interest due to numerous technological applications such as the formation of self-assembled monolayers and as a chemical sensor. Here, we report on the interaction of sulfur with Au(1 1 1) at two different temperatures (300 K and 420 K) studied by real-time scanning tunnelling microscopy, low energy electron diffraction and Auger electron spectroscopy. In the low coverage regime (<0.1 ML), S adsorption lifts the herringbone reconstruction of the clean Au(1 1 1) surface indicating a lateral expansion of the surface layer. An ordered (√3 × √3)R30° sulfur adlayer develops as the coverage reaches ∼0.3 ML. At higher S coverages (>0.3 ML) gold surface atoms are removed from regular terrace sites and incorporated into a growing gold sulfide phase. At 300 K this process leads to the formation of a rough pit and mound surface morphology. This gold sulfide exhibits short-range order and an incommensurate, long-range ordered AuS phase develops upon annealing at 450-525 K. In contrast, formation of an ordered AuS phase via rapid step-retraction rather than etch pit formation is observed during S-interaction with Au(1 1 1) surfaces at 420 K. Our results shed new light on the S-Au(1 1 1) interaction.  相似文献   

18.
Intermixed structures for alkalis (larger than Li) on close-packed substrates have previously been observed only on Al(1 1 1). This study shows that K forms an ordered intermixed structure on Pb(1 1 1). The structures of clean Pb(1 1 1) and Pb(1 1 1)-(√3 × √3)R30°-K were studied using dynamical low-energy electron diffraction (LEED). The clean Pb(1 1 1) surface at 47 K was found to be a relaxed version of the bulk structure, in agreement with an earlier study of the same surface [Y.S. Li, F. Jona, P.M. Marcus, Phys. Rev. B 43 (1991) 6337]. At room temperature, adsorption of K on this surface results in a (√3 × √3)R30° structure, which was shown using dynamical LEED to consist of K atoms substituted in surface vacancies. The K-Pb bond length was found to be 3.62 ± 0.3 Å, with no significant change to the Pb interlayer spacings.  相似文献   

19.
Chemisorbed O and water react on Pd(1 1 1) at low temperatures to form a mixed OH/H2O layer with a (√3 × √3)R30° registry. Reaction requires at least two water molecules to each O before the (2 × 2)O islands are consumed, the most stable OH/water structure being a (OH + H2O) layer containing 0.67 ML of oxygen, formed by the reaction 3H2O + O → 2(H2O + OH). This structure is stabilised compared to pure water structures, decomposing at 190 K as OH recombines and water desorbs. The (√3 × √3)R30° − (OH + H2O) phase cannot be formed by O/H reaction and is distinct from the (√3 × √3)R30° structure formed by O/H coadsorption below 200 K. Mixed OH/water structures do not react with coadsorbed H below 190 K on Pd(1 1 1), preventing this phase catalyzing the low temperature H2/O2 reaction which only occurs at higher temperatures.  相似文献   

20.
Na adsorption at room temperature causes the Na/Si(1 1 1)3 × 1 surface with Na coverage of 1/3 monolayer (ML) to transit into the Na/Si(1 1 1)6 × 1 surface at 1/2 ML and sequentially into the Na/Si(1 1 1)3 × 1 surface at 2/3 ML. The phase transition was studied by Si 2p core-level photoemission spectroscopy. The detailed line shape analysis of the Si 2p core-level spectrum of the Na/Si(1 1 1)3 × 1 surface (2/3 ML) is presented and compared to the Na/Si(1 1 1)3 × 1 surface (1/3 ML) which is composed of Si honeycomb chain-channel structures. This suggests that as additional Na atoms form atomic chains resulting in the Na/Si(1 1 1)3 × 1 surface (2/3 ML), the inner atoms of the Si honeycomb chain-channel structure is buckled due to the additional Na atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号