首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Room temperature (RT) adsorption of nitric oxide (NO) on Ir(1 1 1) was studied by scanning tunneling microscopy (STM). At low exposures, NO molecules can not be imaged by STM, because at RT the diffusion of NO is much faster than the STM scanning speed. At high exposures near the saturation coverage, however, a well-ordered 2 × 2 structure is observed. The coverage of the major 2 × 2 species is 0.25 and they can be assigned to the NO molecules adsorbed on the Ir ontop sites. A small number of less bright spots are assigned to nitrogen atoms produced by dissociation. Their number increases by annealing the NO-saturated surface at 380 K. A small number of another dissociation product, oxygen, are observed as black lines, indicating that the diffusion of oxygen atoms is fast. Scratch-like noise features were also detected by the STM, which suggests that a mobile precursor state exists, which was clearly shown by the effects of electron irradiation from the STM tip. These results are consistent with the previous molecular beam studies. Hopping of the 2 × 2 ordered NO species was frequently observed at the anti-phase domain boundaries and edges of the 2 × 2 islands.  相似文献   

2.
Smoothing of an atomically rough vicinal surface of SrTiO3 is studied by scanning tunneling microscope (STM) observation and by Monte Carlo (MC) simulation. A complex step pattern that resembles a two-dimensional phase separation pattern is observed on the surface. Analysis of the step pattern during annealing obtained by the STM in comparison with the MC simulation reveals an asymmetry of the relaxation pattern between islands and holes. The asymmetry is attributed to the difference of the mobility of an adatom and an atomic hole, and the asymmetry is enhanced by the step edge diffusion barrier. Values of an effective bond energy and an effective diffusion barrier as well as the surface diffusion coefficient are deduced from the relaxation pattern.  相似文献   

3.
Diffusion of Pt adatom across the strained {1 1 1}-faceted step is studied by embedded atom method along with nudged elastic band method. For adatom on the flat (1 1 1) surface, the anisotropic diffusion behavior is found as the uniaxial strain is imposed. For the strained {1 1 1}-faceted step, our results show that the maximum energy barrier for adatom crossing step edge remains approximately constant as the strain varied from −1.0% to 1.0%, and there is a rise as the larger uniaxial strain is applied. The calculated energy barrier for adatom diffusion along the step edge increases with increasing tensile strain, and the slope of the straight line is small.  相似文献   

4.
Diffusion of iron atoms on clean W(1 0 0) and W(1 1 0) as well as on Fe/W(1 0 0) and Fe/W(1 1 0) surfaces was investigated by means of exhaustive first-principle calculations. Comparison of the activation energy barriers obtained for hopping and exchange migration processes shows that the surface diffusion proceeds via jumps to the nearest sites. The activation energies are higher for Fe adatom on clean tungsten than those for Fe adatoms moving on iron-covered tungsten. The magnetism of the underlying Fe/W(1 0 0) films has a pronounced influence on the diffusion, as evidenced not only by a reduced activation energy barrier but also by a change of the stable adsorption place. Fe atoms reaching step edges are trapped there and eventually diffuse along the steps more slowly than the adatoms on the terraces. The rate of diffusion increases upon depositing a row of Fe atoms along steps.  相似文献   

5.
黄仁忠  刘柳  杨文静 《物理学报》2011,60(11):116803-116803
采用原子尺度的模拟方法,探讨了在零偏压下扫描隧道显微镜(STM)针尖调制的金属表面岛上原子运动及岛边的层间质量输运. 研究结果显示STM的移动对岛上及岛边的原子扩散有重要的影响. 针尖与吸附原子的交互作用及岛和基体中强的形状变化影响了岛上吸附原子的跳跃扩散及岛边的跳下扩散和交换扩散过程. 研究发现,通过调节针尖与基体的垂直距离及针尖与吸附原子的水平距离,可以降低岛上吸附原子的跳跃扩散能垒及岛边的跳下扩散和交换扩散能垒,从而实现薄膜由三维生长模式向二维生长模式的转变. 关键词: 扫描隧道显微镜 原子运动 质量输运  相似文献   

6.
With static relaxation, the surface diffusion activation energies of a single Cu adatom migrated by both atomic exchange and hopping mechanisms and the forces acted on the diffusing adatom from other atoms of Cu (0 0 1) or (1 1 0) surface are calculated by using the MAEAM. When adatom migrated on Cu (0 0 1) or (1 1 0) surface, the increment curves of the system energy by hopping mechanism are symmetrical and the saddle points are in the midpoints of the migration path, but the ones by the exchange mechanism are dissymmetrical and the saddle points are always close to the initial hole positions of the adatom and away from the initial equilibrium positions of the exchanged atom. From minimization of both the diffusion activation energy and the force acted on the diffusing adatom from other atoms, we found that, on Cu (0 0 1) surface the favorable diffusion mechanism is hopping mechanism, however, on Cu (1 1 0) surface, hopping via long bridge is easier than the exchange mechanism but the hopping via short bridge is more difficult than the exchange mechanism.  相似文献   

7.
Structural and diffusion properties of a Cu(0 0 1)-c(2 × 2)-Pd surface and sub-surface ordered alloys are studied by using interaction potentials obtained from the embedded-atom method. The calculated diffusion energies are in agreement with observed kinetics of the surface alloy formation and confirm stability of the underlayer alloy. Activation energy of planar diffusion of palladium at the initial stage of the alloy formation as well as the activation energy of the overlayer-underlayer diffusion of the Pd atoms are in good agreement with those obtained by the scanning tunneling microscopy and low energy electron diffraction measurements, respectively.  相似文献   

8.
We investigate the low-coverage regime of vanadium deposition on the Si(1 1 1)-7 × 7 surface using a combination of scanning tunnelling microscopy (STM) and density-functional theory (DFT) adsorption energy calculations. We theoretically identify the most stable structures in this system: (i) substitutional vanadium atoms at silicon adatom positions; (ii) interstitial vanadium atoms between silicon adatoms and rest atoms; and (iii) interstitial vanadium - silicon adatom vacancy complexes. STM images reveal two simple vanadium-related features near the Si adatom positions: bright spots at both polarities (BB) and dark spots for empty and bright spots for filled states (DB). We relate the BB spots to the interstitial structures and the DB spots to substitutional structures.  相似文献   

9.
A reversible, temperature-driven structural surface phase transition of Pb/Si(1 1 1) nano-domains is studied with a variable-temperature scanning tunneling microscope (STM). Finite-size effects of the transition are clearly demonstrated. Most importantly, structural fluctuations in the low-temperature phase can be induced by the direct interaction between the tip atoms and the surface atoms. The structural changes reveal dynamics in the low-temperature phase. Amazingly, the largest size of the domains that can be manipulated decreases with decreasing sample temperature.  相似文献   

10.
Using temperature-variable scanning tunneling microscopy, we studied the coalescence of vacancy islands on Cu(0 0 1) in ultra-high vacuum. From the temperature dependence of the relaxation of merged vacancy islands to the equilibrium shape we obtain an activation energy of the island coalescence process of 0.76 eV. From that value we deduce an activation energy for the atomic hopping coefficient of EΓh=0.89 eV. Comparing our result with previous STM data on step fluctuations with dominant diffusion along straight step segments (EΓh=0.68 eV; [M. Giesen, S. Dieluweit, J. Mol. Catal. A: Chem. 216 (2004) 263]) and step fluctuations with kink crossing (EΓh=0.9 eV; [M. Giesen-Seibert, F. Schmitz, R. Jentjens, H. Ibach, Surf. Sci. 329 (1995) 47]), we conclude that there is a large extra barrier for diffusion of atoms across kinks on Cu(0 0 1) of the order of 0.23 eV. This is the first direct experimental evidence for the existence of a large kink Ehrlich-Schwoebel barrier on Cu(0 0 1).  相似文献   

11.
Scanning tunneling spectroscopy (STS) based on scanning tunneling microscopy (STM) makes it possible to map the local electronic density of states for clean surfaces and for those with adsorbates. We have developed a protocol that allows us to obtain the spectral fingerprints of halogen atoms on Si(0 0 1), and we use those fingerprints to distinguish between adatom species for surfaces with Cl and Br mixed adsorbates. The key to the process is the energy distribution of the antibonding states that depend on the halogen species.  相似文献   

12.
The dissociative adsorption of ethylene (C2H4) on Ni(1 1 1) was studied by scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. The STM studies reveal that ethylene decomposes exclusively at the step edges at room temperature. However, the step edge sites are poisoned by the reaction products and thus only a small brim of decomposed ethylene is formed. At 500 K decomposition on the (1 1 1) facets leads to a continuous growth of carbidic islands, which nucleate along the step edges.DFT calculations were performed for several intermediate steps in the decomposition of ethylene on both Ni(1 1 1) and the stepped Ni(2 1 1) surface. In general the Ni(2 1 1) surface is found to have a higher reactivity than the Ni(1 1 1) surface. Furthermore, the calculations show that the influence of step edge atoms is very different for the different reaction pathways. In particular the barrier for dissociation is lowered significantly more than the barrier for dehydrogenation, and this is of great importance for the bond-breaking selectivity of Ni surfaces.The influence of step edges was also probed by evaporating Ag onto the Ni(1 1 1) surface. STM shows that the room temperature evaporation leads to a step flow growth of Ag islands, and a subsequent annealing at 800 K causes the Ag atoms to completely wet the step edges of Ni(1 1 1). The blocking of the step edges is shown to prevent all decomposition of ethylene at room temperature, whereas the terrace site decomposition at 500 K is confirmed to be unaffected by the Ag atoms.Finally a high surface area NiAg alloy catalyst supported on MgAl2O4 was synthesized and tested in flow reactor measurements. The NiAg catalyst has a much lower activity for ethane hydrogenolysis than a similar Ni catalyst, which can be rationalized by the STM and DFT results.  相似文献   

13.
We have studied hydrogen adsorption on the Ge(1 1 1) c(2 × 8) surface using scanning tunneling microscopy (STM) and angle-resolved photoelectron spectroscopy (ARPES). We find that atomic hydrogen preferentially adsorbs on rest atom sites. The neighbouring adatoms appear higher in STM images, which clearly indicates a charge transfer from the rest atom states to the adatom states. The surface states near the Fermi-level have been followed by ARPES as function of H exposure. Initially, there is strong emission from the rest atom states but no emission at the Fermi-level which confirms the semiconducting character of the c(2 × 8) surface. With increasing H exposure a structure develops in the close vicinity of the Fermi-level. The energy position clearly indicates a metallic character of the H-adsorbed surface. Since the only change in the STM images is the increased brightness of the adatoms neighbouring a H-terminated rest atom, we identify the emission at the Fermi-level with these adatom states.  相似文献   

14.
M.A.K. Zilani 《Surface science》2007,601(12):2486-2490
We demonstrate the growth of Fe-induced magic clusters on Si(1 1 1)-(7 × 7) template by in situ scanning tunneling microscopy (STM). These clusters form near a dimer row at one side of the half-unit cell (HUC); and with three different equivalent orientations. A cluster model comprising three top layer Si atoms bonded to six Fe atoms at the next layer in the 7 × 7 faulted-half template is proposed. The optimized cluster structure determined by first-principles total-energy calculation shows an inward-shifting of the three center Fe atoms. The clusters and the nearby center-adatoms of the next HUCs appear with a significantly reduced height below bias voltages 0.4 V in high resolution empty-state STM images, suggesting an energy gap opening near the Fermi level at these localized cluster and adatom sites. We explain the stabilization of the clusters on the 7 × 7 template using the gain in electronic energy as the driving force for cluster formation.  相似文献   

15.
The Ga-adsorbed structure on Si(1 1 3) surface at low coverage has been studied by scanning tunneling microscopy (STM). The bright protrusion corresponding to the position of the dimer without the interstitial Si atom of the clean surface disappeared in the filled-state STM image after Ga adsorption, although the protrusion due to the Si adatom still remained. On the basis of the adatom-dimer-interstitial (ADI) model, this result indicates that the Ga atom is adsorbed interstitially at the center of another pentamer that does not have the interstitial Si atom. An ab initio calculation was performed and STM images were simulated.  相似文献   

16.
Diffusions of small cluster Pt6 on Pt(1 1 1) surface and Cu6 on Cu(1 1 1) are studied by molecular dynamics simulation, respectively. The atomic interaction is modeled by the semiempirical potential. The results show that the diffusion processes in the two systems are far different. For example, on Pt(1 1 1) surface, the hopping of single atom and the shearing of two atoms of hexamer only occur on the adatom(s) adsorbed at B-step, while on Cu(1 1 1) surface they can appear on the adatom(s) either at A-step or B-step. To the concerted translation of the parallelogram hexamer, the anisotropy in the diffusion path is observed in the two systems, the mechanisms and then the preferential paths, however, are completely different. The reasons for these diffusion characteristics and differences are discussed.  相似文献   

17.
The effect that an additional energy barrier Ekr for step adatoms moving around kinks has on equilibrium step edge fluctuations is explored using scaling arguments and kinetic Monte Carlo simulations. When mass transport is through step edge diffusion, the time correlation function of the step fluctuations behaves as C(t)=A(T)t1/4. At low temperatures the prefactor A(T) shows Arrhenius behavior with an activation energy (Edet+3?)/4 if Ekr<? and (Edet+Ekr+2?)/4 if Ekr>?, where ? is the kink energy and Edet is the barrier for detachment of a step adatom from a kink. We point out that the assumption of an Einstein relation for step edge diffusion has lead to an incorrect interpretation of step fluctuation experiments, and explain why such a relation does not hold. The theory is applied to experimental results on Pt(1 1 1) and Cu(1 0 0).  相似文献   

18.
Atomic oxygen resulting from the dissociation of O2 on Pd(1 1 1) at low coverage was studied in a variable temperature scanning tunneling microscope (STM) in the range from 30 to 210 K. Oxygen atoms, which typically appear as 30-40 pm deep depressions on Pd(1 1 1), occupy fcc hollow sites and form ordered p(2 × 2) islands upon annealing above 180 K. The mobility of the atoms diminishes rapidly below 180 K, with an approximate diffusion barrier of 0.4-0.5 eV. Oxygen atom pairs produced by thermal dissociation of O2 at 160 K occupy both fcc and hcp hollow sites. The atoms travel approximately 0.25 nm after dissociation, and the distribution of pairs is strongly influenced by the presence of subsurface impurities within the Pd sample. At much lower temperatures, the STM tip can dissociate oxygen molecules. Dissociation occurs at sample bias voltages exceeding approximately 0.1 V. Following tip-induced dissociation, the product atoms occupy only fcc hollow sites. Oxygen atoms can be manipulated via short range repulsive interactions with the STM tip.  相似文献   

19.
We have studied initial growth of Sn atoms on Ge(0 0 1) surfaces at room temperature and 80 K by scanning tunneling microscopy. For Sn deposition onto the Ge(0 0 1) substrate at room temperature, the Sn atoms form two kinds of one-dimensional structures composed of ad-dimers with different alignment, in the 〈3 1 0〉 and the 〈1 1 0〉 directions, and epitaxial structures. For Sn deposition onto the substrate at 80 K, the population of the dimer chains aligning in the 〈3 1 0〉 direction increases. The diffusion barrier of the Sn adatom on the substrate kinetically determines the population of the dimer chain. We propose that the diffusion barrier height depends on surface strain induced by the adatom. The two kinds of dimer chains appearing on the Ge(0 0 1) and Si(0 0 1) surfaces with adatoms of the group-IV elements are systematically interpreted in terms of the surface strain.  相似文献   

20.
The adsorption of Gd thin layers on the Mo(2 1 1) face was investigated by using Auger electron spectroscopy (AES), low electron energy diffraction (LEED), scanning tunneling microscopy (STM), X-ray photoemission spectroscopy (XPS) and measurements of the work function changes (Δφ). It was found that at 300 K Gd does not form any dilute chain structures and from the very beginning of the adsorption process Gd forms a densely packed layer. The dilute p(4 × 1) chain structure was observed by LEED after annealing thin layers (θ < 1 ML) to temperatures above 770 K. STM images confirm the existence of the p(4 × 1) structure islands. The intermixing of the substrate and adsorbate atoms takes place.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号