首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In situ electrochemical scanning tunneling microscopy (STM) has been used to examine the structures of benzenethiol adlayers on Au(1 0 0) and Pt(1 0 0) electrodes in 0.1 M HClO4, revealing the formation of well-ordered adlattices of Au(1 0 0)-(√2 × √5) between 0.2 and 0.9 V and Pt(1 0 0)-(√2 × √2)R45° between 0 and 0.5 V (versus reversible hydrogen electrode), respectively. The coverage of Au(1 0 0)-(√2 × √5) is 0.33, which is identical to those observed for upright alkanethiol admolecules on Au(1 1 1). In comparison, the coverage of Pt(1 0 0)-(√2 × √2)R45° - benzenethiol is 0.5, much higher than those of thiol molecules on gold surfaces. This result suggests that benzenethiol admolecules on Pt(1 0 0) could stand even more upright than those on Au(1 0 0). All benzenethiol admolecules were imaged by the STM as protrusions with equal corrugation heights, suggesting identical molecular registries on Au(1 0 0) and Pt(1 0 0) electrodes, respectively. Modulation of the potential of a benzenethiol-coated Au(1 0 0) electrode resulted in irreversible desorption of admolecules at E ? 0.1 V (vs. reversible hydrogen electrode) and oxidation of admolecules at E ? 0.9 V. In contrast, benzenethiol admolecule was not desorbed from Pt(1 0 0) at potentials as negative as the onset of hydrogen evolution. Raising the potential rendered deposition of more benzenethiol molecules before oxidation of admolecules commenced at E > 0.9 V.  相似文献   

2.
The adsorption structures of three xanthene dyes (rhodamine B (Rh B), fluorescein and eosin) on Au(1 1 1) in HClO4 solution, have been investigated by in situ scanning tunneling microscopy (STM) and cyclic voltammetry. High-resolution STM images reveal the molecular orientation and packing arrangement in the ordered adlayers. A (5 × 10) structure is found on Rh B adlayer. (5 × 8) structures are observed on fluorescein and eosin adlayers, respectively. An intriguing aspect of this work is that three xanthene molecules form dimeric structures on Au(1 1 1) surface. The electrostatic interaction and van der Waals force are responsible to the dimeric formation of Rh B, while the interaction between Br atoms and hydrogen bond correspond to the dimerization of eosin and fluorescein, respectively. The structural models are tentatively proposed for the three ordered adlayers. The results obtained will be helpful to understand the interaction mechanism of dimerization and the degradation mechanism of dye pollutant.  相似文献   

3.
Electrodeposition is used to produce epitaxial single-crystal films on Au(1 1 1) substrates without annealing or other post-deposition modification. X-ray techniques show that the Bi(0 1 2) plane is parallel to the underlying Au(1 1 1) surface, and the azimuthal orientation of the films is determined. Combination of the X-ray data with in situ scanning tunneling microscopy (STM) images suggests a common growth mode from the first few layers up to thick films.  相似文献   

4.
Atomic oxygen resulting from the dissociation of O2 on Pd(1 1 1) at low coverage was studied in a variable temperature scanning tunneling microscope (STM) in the range from 30 to 210 K. Oxygen atoms, which typically appear as 30-40 pm deep depressions on Pd(1 1 1), occupy fcc hollow sites and form ordered p(2 × 2) islands upon annealing above 180 K. The mobility of the atoms diminishes rapidly below 180 K, with an approximate diffusion barrier of 0.4-0.5 eV. Oxygen atom pairs produced by thermal dissociation of O2 at 160 K occupy both fcc and hcp hollow sites. The atoms travel approximately 0.25 nm after dissociation, and the distribution of pairs is strongly influenced by the presence of subsurface impurities within the Pd sample. At much lower temperatures, the STM tip can dissociate oxygen molecules. Dissociation occurs at sample bias voltages exceeding approximately 0.1 V. Following tip-induced dissociation, the product atoms occupy only fcc hollow sites. Oxygen atoms can be manipulated via short range repulsive interactions with the STM tip.  相似文献   

5.
We present a scanning tunneling microscopy (STM) investigation of 9-aminoanthracene (AA) on the reconstructed Au(1 1 1) surface. The bare Au(1 1 1) surface shows the herringbone reconstruction which is conserved upon deposition of the organic molecules. Most of the AA molecules are found to decorate the regions of fcc-stacking of the gold surface where a periodic linear arrangement is observed. The orientation of the long molecule axis of individual molecules is along the -directions of the Au substrate. In addition, for individual domains of the surface reconstruction, one of the three possible orientations is preferred. On substrate areas which exhibit a high step density, the steps are completely decorated by AA molecules. A detailed analysis of the STM images reveals that the molecules are located on top terrace levels. The fine structure of individual molecules on the terrace shows a clear dependence on the tunneling voltage and resembles the molecular orbitals of the free AA molecule.  相似文献   

6.
We have theoretically studied the adsorption of a thiophenethiolate (C4H3S-S) molecule on the Au(1 1 1) surface by first-principles calculations. It is found that the bridge site is the most stable adsorption site with the adsorption energy of 1.02 eV. In the optimized adsorption geometry, the bond between the head S atom and the connected C atom in the tail thiophene molecule is tilted by 57.2° from the surface normal. In addition, the adsorption of thiophenethiolate induces large relaxations of the surface Au atoms around it. Furthermore, weak interactions between the S atom in the tail thiophene ring and the Au atoms also contribute to the adsorption on the Au surface.  相似文献   

7.
We have investigated the initial stages of the growth of pentacene thin films on the Au(1 0 0) substrate using synchrotron radiation photoelectron spectroscopy (PES), near edge X-ray absorption fine structure (NEXAFS) and scanning tunnelling microscopy (STM). Results indicate a well-ordered structure with the pentacene molecules adopting a predominantly flat orientation with respect to the substrate for coverages of less than three monolayers. NEXAFS and photoemission data indicates the presence of a second molecular orientation for thicker films, with the introduction of a slight tilting away from planar bonding geometry at higher pentacene coverages. STM images of coverages less than three monolayers indicate a well-ordered pentacene structure allowing for the calculation of pentacene unit cell parameters. The pentacene molecular rows adopt a side-by-side bonding arrangement on the surface. For pentacene deposited at room temperature, step edges were observed to act as nucleation centres for film growth. Annealing of the substrate to 373 K was found to remove excess molecules and improve film quality, but did not otherwise change the bonding geometry of the pentacene with respect to the surface.  相似文献   

8.
N. Zhu  T. Komeda 《Surface science》2007,601(8):1789-1794
We investigate the structure of submonolayer film of 4,4′-biphenyl dicarboxylic acid (BDA) molecules on Au(1 1 1)-22 × √3 reconstructed surface with the use of scanning tunneling microscopy (STM). The BDA molecules form ordered structures on Au(1 1 1) surface which are commensurate with the substrate. We have concluded that the molecule-molecule interaction is mainly through hydrogen bonding formed by a straight dimer of BDA molecules. The straight dimer can be expressed as 4s + 2t or its six crystallographic equivalents using the unit vectors of the gold substrate of s and t. The length of hydrogen bonding (O-H-O) is estimated to be 0.31 nm assuming nearest neighbor distance of gold atoms of 0.275 nm. The ordering shows a clear contrast with the case of BDA on Cu(1 0 0) surface [S. Stepanow, N. Lin, F. Vidal, A. Landa, M. Ruben, J.V. Barth, K. Kern, Nanoletters 5 (2005) 901] in which a square type of ordering of molecules is observed by the formation of hydrogen bonding between a carboxylate (COO) and a benzene ring. The clear difference of the ordered structure on Cu(1 0 0) and Au(1 1 1) surface demonstrates that the absence (presence) of deprotonation of carboxyl group of BDA molecule on Au(1 1 1) (Cu(1 0 0)) switches the straight and square type ordering of BDA molecules.  相似文献   

9.
Adsorption structures of the pentacene (C22H14) molecule on the clean Si(0 0 1)-2 × 1 surface were investigated by scanning tunneling microscopy (STM) in conjunction with density functional theory calculations and STM image simulations. The pentacene molecules were found to adsorb on four major sites and four minor sites. The adsorption structures of the pentacene molecules at the four major sites were determined by comparison between the experimental and the simulated STM images. Three out of the four theoretically identified adsorption structures are different from the previously proposed adsorption structures. They involve six to eight Si-C covalent chemical bonds. The adsorption energies of the major four structures are calculated to be in the range 67-128 kcal/mol. It was also found that the pentacene molecule hardly hopped on the surface when applying pulse bias voltages on the molecule, but was mostly decomposed.  相似文献   

10.
Scanning tunneling microscopy (STM) lithography was utilized to investigate a 12-mer HS-ssDNA self-assembled Au (1 1 1) surface. Under low sample bias and high tunneling current, the repeated scanning resulted in the growth of nanostripes. The stripe orientation, the stripe width, and the spacer width between adjacent nanostripes were found to be dependent on their relative locations from dislocation points where two adjacent gold terraces overlap. The stripe and the spacer width also vary with the distance from these points. The results indicate that such stripes may reflect the strain distributions and the release pathway along the Au surfaces. The results also suggest that the presence of HS-ssDNA molecules enhances the lithography processes on the gold surface by acting as force transmitters.  相似文献   

11.
We have studied the initial stages of adsorption of C60 on the Pt (1 1 0)-(1 × 2) surface by means of STM. At room temperature, fullerene molecules adsorb in the troughs between two adjacent Pt rows of the missing row reconstruction. Mobility over the terraces is negligible, denoting strong bonding with the surface, also testified by a well-defined orientation of fullerene monomers with respect to the substrate. Upon annealing at 750 K, molecular migration towards kinks and step edges occurs, where small islands nucleation begins. A commensurate registry with the substrate is maintained by small (5-10 molecules) C60 aggregates, leading to expanded nearest-neighbour distances with respect to those found in hexagonal close packed fullerene ad-islands grown on other metallic substrates.  相似文献   

12.
Subsequent III-V integration by metal-organic vapor phase epitaxy (MOVPE) or chemical vapor deposition (CVD) necessitates elaborate preparation of Si(1 0 0) substrates in chemical vapor environments characterized by the presence of hydrogen used as process gas and of various precursor molecules. The atomic structure of Si(1 0 0) surfaces prepared in a MOVPE reactor was investigated by low energy electron diffraction (LEED) and scanning tunnelling microscopy (STM) available through a dedicated, contamination-free sample transfer to ultra high vacuum (UHV). Since the substrate misorientation has a fundamental impact on the atomic surface structure, we selected a representative set consisting of Si(1 0 0) with 0.1°, 2° and 6° off-cut in [0 1 1] direction for our study. Similar to standard UHV preparation, the LEED and STM results of the CVD-prepared Si(1 0 0) surfaces indicated two-domain (2 × 1)/(1 × 2) reconstructions for lower misorientations implying a predominance of single-layer steps undesirable for subsequent III-V layers. However, double-layer steps developed on 6° misoriented Si(1 0 0) substrates, but STM also showed odd-numbered step heights and LEED confirmed the presence of minority surface reconstruction domains. Strongly depending on misorientation, the STM images revealed complex step structures correlated to the relative dimer orientation on the terraces.  相似文献   

13.
Deposition and fabrication of films of Au nanoclusters protected by alkanethiolate ligands are attempted on a TiO2(1 1 0) surface and the structures of films are observed by a scanning tunneling microscope (STM). Effects of oxygen and hydrogen-plasma etching in addition to UV irradiation on the structure and chemical composition of the films are also investigated by using STM and X-ray photoelectron spectroscopy. Alkanethiolate Au nanoclusters are produced using a modified Brust synthesis method and their LB films are dip-coated on TiO2(1 1 0). Alkanethiolate Au nanoclusters are weakly bound to the substrate and can be manipulated with an STM tip. Net-like structures of alkanethiolate Au nanoclusters are formed by a strong blast of air. Oxygen-plasma etching removes alkanethiolate ligands and simultaneously oxidizes Au clusters. At room temperature, prolonged oxygen-plasma etching causes agglomeration of Au nanoclusters. UV irradiation removes ligands partly, which makes Au nanoclusters less mobile. The net-like structure of alkanethiolate Au clusters produced by a blast of air is retained after oxygen and hydrogen-plasma etching.  相似文献   

14.
In order to grow magnetic layers on silicon substrates, a non-magnetic buffer layer is often needed to avoid silicide formation and to reproduce the perpendicular magnetic anisotropy obtained on metal single crystals, as in the case of Co on Au(1 1 1) and Pt(1 1 1). In this context, we have studied the electrochemical growth of Au buffer layers, and show that it is possible to obtain different film morphologies on hydrogen-terminated vicinal Si(1 1 1) surfaces by varying the electrochemical deposition parameters and solution composition. Two different morphologies have been obtained as observed by atomic force microscopy: continuous 2D Au films (chloride solution at pH 4), and films consisting in flat top 3D Au islands decorating the Si(1 1 1) step edges (cyanide solution at pH 14). X-ray diffraction measurements reveal that the gold layer and islands have Au(1 1 1) orientation and are in epitaxy with the Si(1 1 1) surface. In the case of islands, the lateral facets have also Au(1 1 1) orientation. Results are discussed within a model in which the breaking of the Si-H surface bonds plays a major role in the Au nucleation and growth mechanisms.  相似文献   

15.
Electrochemical deposition of Cu and Co in monolayer amounts on hydrogen terminated Si(1 1 1) was studied ex situ and in situ by X-ray techniques. The X-ray beam was found to have a strong effect on the deposit causing desorption under the beam. Cu deposition on GaAs(0 0 1) from UHV is compared with electrodeposited Cu on the same surface, elucidating similarities and differences of electrochemical and UHV deposition. Roughening due to corrosion of Cu3Au(1 1 1) is observed by crystal truncation scattering. The observed behaviour of passivation of this surface is explained by the formation of Au clusters, increasingly covering the surface at higher oxidation potential.  相似文献   

16.
In situ scanning tunneling microscopy (STM) studies of homoepitaxial electrodeposition on Au(1 1 1) from hydrochloric acid solution reveal an unusual deposit morphology in the potential regime of the Au surface reconstruction, where the deposited Au islands are separated by nanoscale grooves with preferred widths of 6 and 12 nm. The formation of these structures is attributed to a hindered coalescence of the islands, caused by elastic energy contributions of the reconstructed bottom of the grooves.  相似文献   

17.
Vitamin B12 derivatives immobilized at flame-annealed Au(1 1 1) electrode surfaces have been investigated in close correlation with their structural properties and spatial arrangement at the electrode substrate by scanning tunneling microscopy (STM) in air and in aqueous 0.1 M NaClO4 solution. The investigated compounds were symmetrical (B12C10S-SC10B12) and nonsymmetrical (B12C10S-SC10) dialkyl disulfide derivatives of vitamin B12, attached to the electrode surfaces by the S-Au bond. The ex situ and in situ STM experiments show the formation of a surface layer, whose packing density and structure is presumably controlled by the spatial arrangement of the large cobyrinate head groups. In presence of the symmetrical B12 compound, a disordered surface layer is observed. Voltammetric investigations show that, in 0.1 M NaClO4, this layer becomes unstable at potentials approximately ? −1000 mV vs. MSE and is almost completely removed at more negative potentials. The STM imaging properties of the nonsymmetrical B12 surface layer show a significant dependence on the tunneling distance. In particular, at small tunneling distances, a highly regular hexagonal surface pattern is observed that suggests strongly the presence of an ordered surface assembly. Modeling of the B12 head group has been performed to provide information for a structure-related interpretation of the high-resolution STM images. The investigations are first STM results obtained at such B12 modified electrodes.  相似文献   

18.
Au/TiO2/Ru(0 0 0 1) model catalysts and their interaction with CO were investigated by scanning tunneling microscopy and different surface spectroscopies. Thin titanium oxide films were prepared by Ti deposition on Ru(0 0 0 1) in an O2 atmosphere and subsequent annealing in O2. By optimizing the conditions for deposition and post-treatment, smooth films were obtained either as fully oxidized TiO2 or as partly reduced TiOx, depending on the preparation conditions. CO adsorbed molecularly on both oxidized and reduced TiO2, with slightly stronger bonding on the reduced films. Model catalyst surfaces were prepared by depositing submonolayer quantities of Au on the films and characterized by X-ray photoelectron spectroscopy and scanning tunneling microscopy. From X-ray photoelectron spectroscopy, a weak interaction between the Au and the TiO2 substrate was found. At 100 K CO adsorption occurred on both the TiO2 film and on the Au nanoparticles. CO desorbed from the Au particles with activation energies between 53 and 65 kJ/mol, depending on the Au coverage. If the Au deposit was annealed to 770 K prior to CO exposure, the CO adsorption energy decreased significantly. STM measurements revealed that the Au particles grow upon annealing, but are not encapsulated by TiOx suboxides. The higher CO adsorption energy observed for smaller Au coverages and before annealing is attributed to a significantly stronger interaction of CO with mono- and bilayer Au islands, while for higher particles, the adsorption energy becomes more bulk-like. The implications of these effects on the known particle size effects in CO oxidation over supported Au/TiO2 catalysts are discussed.  相似文献   

19.
Xueing Zhao 《Surface science》2007,601(12):2445-2452
This article reports photoemission and STM studies for the adsorption and dissociation of water on Ce-Au(1 1 1) alloys and CeOx/Au(1 1 1) surfaces. In general, the adsorption of water at 300 K on disordered Ce-Au(1 1 1) alloys led to O-H bond breaking and the formation of Ce(OH)x species. Heating to 500-600 K induced the decomposition or disproportionation of the adsorbed OH groups, with the evolution of H2 and H2O into gas phase and the formation of Ce2O3 islands on the gold substrate. The intrinsic Ce ↔ H2O interactions were explored by depositing Ce atoms on water multilayers supported on Au(1 1 1). After adsorbing Ce on ice layers at 100 K, the admetal was oxidized immediately to yield Ce3+. Heating to room temperature produced finger-like islands of Ce(OH)x on the gold substrate. The hydroxyl groups dissociated upon additional heating to 500-600 K, leaving Ce2O3 particles over the surface. On these systems, water was not able to fully oxidize Ce into CeO2 under UHV conditions. A complete Ce2O3 → CeO2 transformation was seen upon reaction with O2. The particles of CeO2 dispersed on Au(1 1 1) did not interact with water at 300 K or higher temperatures. In this respect, they exhibited the same reactivity as does a periodic CeO2(1 1 1) surface. On the other hand, the Ce2O3/Au(1 1 1) and CeO2−x/Au(1 1 1) surfaces readily dissociated H2O at 300-500 K. These systems showed an interesting reactivity for H2O decomposition. Water decomposed into OH groups on Ce2O3/Au(1 1 1) or CeO2−x/Au(1 1 1) without completely oxidizing Ce3+ into Ce4+. Annealing over 500 K removed the hydroxyl groups leaving behind CeO2−x/Au(1 1 1) surfaces. In other words, the activity of CeOx/Au(1 1 1) for water dissociation can be easily recovered. The behavior of gold-ceria catalysts during the water-gas shift reaction is discussed in light of these results.  相似文献   

20.
The oxidation of the W(1 0 0) surface at elevated temperatures has been studied using room temperature STM and LEED. High exposure of the clean surface to O2 at 1500 K followed by flash-annealing to 2300 K in UHV results in the formation of a novel p(3 × 1) reconstruction, which is imaged by STM as a missing-row structure on the surface. Upon further annealing in UHV, this surface develops a floreted LEED pattern characteristic of twinned microdomains of monoclinic WOx, while maintaining the p(3 × 1) missing-row structure. Atomically resolved STM images of this surface show a complex domain structure with single and double W〈0 1 0〉 rows coexisting on the surface in different domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号