首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
MgO ultrathin films were grown on Si(1 0 0) substrates as buffer layers for the growth of ferroelectric BaTiO3 thin films by laser molecular beam epitaxy (L-MBE). The deposition process of MgO buffer layers grown on silicon was in situ monitored by reflection high-energy electron diffraction (RHEED). The structure of BaTiO3 films fabricated on MgO buffers was investigated by X-ray diffraction. Biaxially textured MgO was obtained at high laser energy density, but when the laser energy was lowered, MgO buffer was transformed to the form of texture with angular dispersion with the increase of the film thickness. BaTiO3 films grown on the former buffer were completely (0 0 1) textured, while those on the latter were (0 0 1) preferred orientated. Furthermore, the fabricated MgO buffers and BaTiO3 films had atomically smooth surface and interface. All these can reveal that the quality of textured MgO buffer is a key factor for the growth of BaTiO3 films on silicon.  相似文献   

2.
The results of gadolinium (Gd)-doped barium titanate (BaTiO3) thin films prepared by laser ablation on glass and silicon substrates are reported. Rutherford backscattering (RBS) analyses carried out on glass samples indicated the substitution of barium (Ba) by gadolinium (Gd) after annealing, leading to a film with composition Ba0.76TiGd0.01O2.5. There is a reduction in the thickness from 2.21 to 2.02 microns for as-deposited and annealed films. The films on silicon showed a higher degree of crystallinity compared to that of glass substrates due to increased annealing temperature. The average grain size calculated using the X-ray diffraction (XRD) pattern from silicon substrates was 30 nm. The film has a tetragonal structure with a “c/a” ratio of 1.03 signifying that the incorporation of Gd in BaTiO3 led to the elongation of the c-axis. The percentage transmittance reduced from 80 to 50% due to annealing and this is probably due to structural changes in the film. Swanepoel envelope method employed on the interference fringes of the transmittance pattern led to the determination of the variation of the refractive index with wavelength. Sellmier single oscillator model was applied to determine the optical constants of the films on glass substrates. Bandgap analyses carried out showed the reduction in bandgap with annealing and also the possibility that Gd incorporation has modified the film chemistry leading to the existence of direct (4.35 eV) and indirect (3.88 eV) allowed transitions in the annealed films. Dielectric property measurement carried out under ambient conditions gave a relaxation time τ of 1.6×10−4 s and conduction by small polaron with the onset of polaron conduction set at about 7 kHz. It is conjectured that these properties, especially the high refractive index and the high bandgaps, can make Gd-doped BaTiO3 a good candidate for optoelectronic applications.  相似文献   

3.
The structure of ultrathin Mo films on SrTiO3(1 0 0) was studied by in situ reflection high-energy electron diffraction (RHEED). A different structure was observed for films less than 20 Å thick than for thicker films. These films were epitaxial and had a metastable structure. Thicker films had the dimensions of equilibrium bcc Mo(1 1 0). Relaxation processes transformed the metastable Mo into bcc Mo, resulting in the following orientation relationships between Mo and SrTiO3: (1 1 0)[0 0 1]bcc Mo ∥ (1 0 0)[0 0 1]SrTiO3 and (1 1 0)[1 1 1]bcc Mo ∥ (1 0 0)[0 1 1]SrTiO3. The formation of such specific orientations is related to transformations via the Bain and Needle Path, respectively.  相似文献   

4.
Particulate composites with composition (x)BaTiO3+(1−x)Ni0.92Co0.03Cu0.05Fe2O4 in which x varies as 1, 0.85, 0.70, 0.55 and 0 (in mol%) were prepared by the conventional double sintering ceramic technique. The presence of two phases viz. ferromagnetic (Ni0.92Co0.03Cu0.05Fe2O4) and ferroelectric (BaTiO3) was confirmed by X-ray diffraction analysis. The dc resistivity and thermo-emf measurements were carried out with variation of temperature. The ac conductivity (σac) measurements investigated in the frequency range 100 Hz to 1 MHz conclude that the conduction in these composites is due to small polarons. The variation of dielectric constant and loss tangent with frequency (20 Hz to 1 MHz) was studied. The static magnetoelectric conversion factor, i.e. dc (dE/dH)H was measured as a function of intensity of applied magnetic field. The changes were observed in electrical properties as well as in magnetoelectric voltage coefficient as the molar ratio of the constituent phases was varied. A maximum value of magnetoelectric conversion factor of 536.06 μV/cm Oe was observed for the composite with 70% BaTiO3+30% Ni0.92Co0.03Cu0.05Fe2O4 at a dc magnetic field of 2.3 K Oe. The maximum magnetoelectric conversion output has been explained in terms of ferrite-ferroelectric content, applied static magnetic field and resistivity.  相似文献   

5.
Smooth Fe78Si10B12 thin films were prepared by r.f. sputtering with the very slow deposition rate of 0.59 nm/min. The as-deposited films were not fully amorphous, instead α-Fe(Si) nanocrystallites were found to be embedded in the amorphous matrix. The saturation magnetostriction λs of the as-deposited film is about 6.5 × 10−6. After annealing at 540 °C for 1 h in an ultrahigh vacuum (4.5 × 10−5 Pa), the fraction of α-Fe(Si) crystalline phase largely increased, and correspondingly the λs decreased to 4.5 × 10−7. Ripple domain structures were observed in the as-deposited film, while dense stripe domains were observed in the annealed sample, characterized by a very narrow domain width of 80 nm. (1 1 0) texture and island-like configuration of α-Fe(Si) nanocrystallites formed by the annealing treatment are responsible for the perpendicular anisotropy. For the as-deposited film, the magnetization curves increased linearly with the increase of the magnetic field, and showed the very small hysteresis. On the other hand, the annealed sample clearly showed a very steep jump near the origin, which is due to the switch process of the dense stripe domain.  相似文献   

6.
J.B. Xu  B. Shen 《Applied Surface Science》2009,255(11):5922-5925
The highly (1 0 0)-oriented BaTiO3 thin films were fabricated on LaNiO3(1 0 0)/Pt/Ti/SiO2/Si substrates under low-temperature conditions. Substrate temperatures throughout the fabrication process remained at or below 400 °C, which allows this process to be compatible with many materials commonly used in integrated circuit manufacturing. X-ray diffraction data provided the evidence for single BaTiO3 phase. Field-emission scanning electron microscopy was used to study the columnar structure of the films. The dielectric properties as a function of frequency in the range of 1 kHz to 1 MHz was obtained. The room temperature remanent polarization (2Pr) and coercive field were found to be ∼5 μC/cm2 and 50 kV/cm, respectively. The BTO film maintains an excellent fatigue-free character even after 109 switching cycles.  相似文献   

7.
Thin film capacitors with a thickness of 200 nm were prepared on SrTiO3 (1 0 0), (1 1 0) and (1 1 1) single crystal substrates at a temperature of 973 K by pulsed laser deposition (PLD) using a KrF excimer laser in an O2-O3 atmosphere with a gas pressure of 1 Pa using an X7R sintered target. As a result, perovskite BaTiO3 solid solution films were obtained. In the X7R thin films on (1 0 0) and (1 1 0) SrTiO3, only diffraction peaks with strong intensities from BaTiO3 (1 0 0) and (1 1 0), respectively, were observed. X7R films on SrTiO3 (1 1 1) were grown epitaxially oriented to the crystal plane direction of the substrate by inserting an initial homoepitaxial SrTiO3 layer with a thickness of 4 nm. The X7R/SrTiO3 film capacitors yielded a large volumetric efficiency of 50 μF/mm3 and a temperature coefficient of capacitance (TCC) of −1.3% to 1.3% which satisfies the EIA standard specifications for X7R.  相似文献   

8.
TiO2 and TiNxOy thin films grown by low pressure metal-organic chemical vapor deposition (LP-MOCVD) on top of Si(0 0 1) substrate were characterized by X-ray multiple diffraction. X-ray reflectivity analysis of TiO2[1 1 0] and TiNO[1 0 0] polycrystalline layers allowed to determine the growth rate (−80 Å/min) of TiO2 and (−40 Å/min) of TiNO films. X-ray multiple diffraction through the Renninger scans, i.e., ?-scans for (0 0 2)Si substrate primary reflection is used as a non-conventional method to obtain the substrate lattice parameter distortion due to the thin film conventional deposition, from where the information on film strain type is obtained.  相似文献   

9.
Well-crystallized 250 nm-thick SrTiO3 thin films on fused-quartz substrate were prepared by pulsed laser deposition. The band-gap of SrTiO3 thin film by transmittance spectra is equal to 3.50 eV, larger than 3.22 eV for the bulk crystal. The nonlinear optical properties of the films were examined with picosecond pulses at 1.064 μm excitation. A large two-photon absorption (TPA) with absorption coefficient of 87.7 cm/GW was obtained, larger than 51.7 cm/GW for BaTiO3 thin films. The nonlinear refractive index n2 is equal to 5.7×10−10 esu with a negative sign, larger than 0.267×10−11 esu for bulk SrTiO3. The large TPA is attributed to intermediate energy levels introduced by the grain boundaries, and the optical limiting behaviors stemming from both TPA and negative nonlinear refraction were also discussed.  相似文献   

10.
S. Soubatch 《Surface science》2006,600(20):4679-4689
We report a systematic study of the interplay between molecular orientation, film morphology and luminescence properties of tetracene thin films on epitaxial alumina films on Ni3Al(1 1 1), employing high resolution electron energy loss spectroscopy (HREELS), X-ray photoelectron spectroscopy (XPS), low energy electron diffraction (LEED), and photoluminescence spectroscopy (PL). If deposited at low temperatures, tetracene forms laterally disordered and compact films in which at least the first monolayer is oriented parallel to the substrate. For thicknesses in the range of 10 Å or below, these as-deposited films show no luminescence, while thicker films exhibit weak luminescence from higher layers. On annealing to 210 K, tetracene films dewet the AlOx/Ni3Al(1 1 1) surface and transform into an island morphology. At the same time, molecules tend to re-orient into a more upright configuration. In this island configuration, even thin films show luminescence. We can thus conclude that in spite of the insulating nature of the surface, the interaction of flat-lying tetracene molecules with AlOx/Ni3Al(1 1 1) is strong enough to provide at least one efficient non-radiative decay channel.  相似文献   

11.
WOx films were prepared by reactive dc magnetron sputtering using tungsten target. Sputtering was carried out at a total pressure of 1.2 Pa using a mixture of argon plus oxygen in an effort to determine the influence of the oxygen partial pressure on structural and optical properties of the films. The deposition rate decreases significantly as the surface of the target is oxidized. X-Ray diffraction revealed the amorphous nature of all the films prepared at oxygen partial pressures higher than 1.71×10−3 Pa. For higher oxygen partial pressures, fully transparent films were deposited, which showed a slight increase in optical band gap with increasing oxygen partial pressure, while the refractive index was simultaneously decreased.  相似文献   

12.
This paper deals with the experimental investigation of the structure and magnetic properties of thin polycrystalline Fe films. Two sets of 50 ± 2 nm thick Fe films were fabricated on Si〈1 0 0〉 substrates with native oxides in place by varying (i) the sputter pressure pAr and (ii) the Fe sputter power PFe. X-ray diffraction (XRD) study revealed that all films grew with strong 〈1 1 0〉 texture normal to the film plane. No higher order peaks were observed in any of the films studied. For both film sets, the lattice constant (a) was less than the bulk Fe lattice constant (a0 = 2.866 Å), which suggested the existence of compressive strain in all films. Two regions of homogeneous strain were observed over the range of pAr studied. Magneto-optical Kerr effect (MOKE) measurements showed that all films exhibited magnetically isotropic behaviour. The magnetic properties were observed to be influenced strongly by pAr. The film grown at pAr = 4 μbar was the most softest (Hs = 100 ± 8 kA m−1, Mr/Ms = 0.87 ± 0.02) film among all the films studied. The magnetic properties were found to be independent of PFe. The effective saturation magnetostriction constant λeff determined (using the Villari method) was positive (4 ± 1 ppm) and observed to vary within the calculated error.  相似文献   

13.
Pulsed laser deposition with a Nd:YAG laser was used to grow thin films from a pre-synthesized Ti3SiC2 MAX-phase formulated ablation target on oxidized Si(1 0 0) and MgO(1 0 0) substrates. The depositions were carried out in a substrate temperature range from 300 to 900 K, and the pressure in the deposition chamber ranged from vacuum (10−5 Pa) to 0.05 Pa Argon background pressure. The properties of the films have been investigated by Rutherford backscattering spectrometry for film thickness and stoichiometric composition and X-ray diffraction for the crystallinity of the films. The silicon content of the films varied with the energy density of the laser beam. To suppress especially the silicon re-sputtering from the substrate, the energy of the incoming particles must be below a threshold of 20 eV. Therefore, the energy density of the laser beam must not be too high. At constant deposition energy density the film thickness depends strongly on the background pressure. The X-ray diffraction measurements show patterns that are typical of amorphous films, i.e. no Ti3SiC2 related reflections were found. Only a very weak TiC(2 0 0) reflection was seen, indicating the presence of a small amount of crystalline TiC.  相似文献   

14.
The influence of ferroelectric polarization on the reaction of 2-fluoroethanol on ferroelectric BaTiO3 thin films was characterized. 2-Fluoroethanol was found to absorb dissociatively on the BaTiO3 surface to form an alkoxide that reacts upon heating to produce acetaldehyde, ethylene, and adsorbed fluorine atoms which remain on the surface. Temperature programmed desorption (TPD) studies showed that the activation energy for the production of the acetaldehyde product was a function the orientation of the ferroelectric dipoles with an ∼4 kJ mol−1 higher value on the c+ termination relative to the c− termination.  相似文献   

15.
Transparent conducting indium oxide (In2O3) thin films have been prepared on glass substrates by the simple sol-gel-spin coating technique. These films have been characterized by X-ray diffraction, resistivity and Hall effect measurements, optical transmission, scanning electron microscopy and atomic force microscopy for their structural, electrical, optical and morphological properties. The influence of spin parameters, number of coating, process temperature on the quality of In2O3 films are studied. In the operating range of deposition, 400-475 °C, all the films showed predominant (2 2 2) orientation. Films deposited at optimum process conditions exhibited a resistivity of 2×10−2 Ω cm along with the average transmittance of about 80% in the visible spectral range (400-700 nm).  相似文献   

16.
(0 0 1)-Oriented tetragonal ferroelectric PbZr0.53Ti0.47O3 (PZT) thin films (90 nm of thickness) have been grown on TiOx/Pt/TiO2/SiO2/Si and TiOx/Pt/MgO substrates. The existence of (1 0 0)-oriented crystallites in the c-axis matrix of the (0 0 1)-oriented films has been evidenced by using four circles X-ray diffraction. Depending on the substrate, the ratio of the lattice parameters c/a was found to be 1.02 (Si) and 1.07 (MgO) and this was correlated with the coercive field values. Local piezoelectric hysteresis loops produced by atomic force microscopy have been taken with profit to characterize the switching properties of the ferroelectric domains at the scale of individual crystallites. In each case, (1 0 0)-oriented crystallites require much higher voltage than (0 0 1)-oriented crystallites for switching. These results are explained by taking into account the strain imposed by the substrate in the film. We conclude that piezoelectric hysteresis loops produced by atomic force microscopy provide very rich information for addressing the local switching property of individual crystallites in PZT thin films.  相似文献   

17.
We studied the low temperature (T ? 130 K) growth of Ag on Si(0 0 1) and Si(1 1 1) flat surfaces prepared by Si homo epitaxy with the aim to achieve thin metallic films. The band structure and morphology of the Ag overlayers have been investigated by means of XPS, UPS, LEED, STM and STS. Surprisingly a (√3 × √3)R30° LEED structure for Ag films has been observed after deposition of 2-6 ML Ag onto a Si(1 1 1)(√3 × √3)R30°Ag surface at low temperatures. XPS investigations showed that these films are solid, and UPS measurements indicate that they are metallic. However, after closer STM studies we found that these films consists of sharp Ag islands and (√3 × √3)R30°Ag flat terraces in between. On Si(0 0 1) the low-temperature deposition yields an epitaxial growth of Ag on clean Si(0 0 1)-2 × 1 with a twinned Ag(1 1 1) structure at coverage’s as low as 10 ML. Furthermore the conductivity of few monolayer Ag films on Si(1 0 0) surfaces has been studied as a function of temperature (40-300 K).  相似文献   

18.
The oxygen surface exchange of La0.7Sr0.3MnO3 (LSM) thin films was investigated using the electrical conductivity relaxation (ECR) method. Epitaxial (100)-, (110)-, and (111)-oriented LSM films were fabricated on corresponding SrTiO3 (STO) substrates using pulsed laser deposition. The LSM films had well-controlled surface qualities, exhibited bulk-like steady-state electrical properties, and exhibited surface dominated responses in ECR. The chemical surface exchange coefficients (kchem) were determined and varied from ≈ 1 × 10− 6 to 65 × 10− 6 cm/s, depending on temperature and orientation, with activation energies of between 0.8 and 1.2 eV. At 800 °C, a four fold variation is observed in the kchem values, with (110)/(100) being the highest/lowest, explained well by the high activation energy for (110), ≈ 1.16 eV, and the low energy for (111) and (100), ≈0.83 eV.  相似文献   

19.
Metal-insulator-metal (MIM) capacitors were fabricated using ZrO2 films and the effects of structural and native defects of the ZrO2 films on the electrical and dielectric properties were investigated. For preparing ZrO2 films, Zr films were deposited on Pt/Si substrates by ion beam deposition (IBD) system with/without substrate bias voltages and oxidized at 200 °C for 60 min under 0.1 MPa O2 atmosphere with/without UV light irradiation (λ = 193 nm, Deep UV lamp). The ZrO2(∼12 nm) films on Pt(∼100 nm)/Si were characterized by X-ray diffraction pattern (XRD), field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HRTEM), capacitance-voltage (C-V) and current-voltage (I-V) measurements were carried out on MIM structures. ZrO2 films, fabricated by oxidizing the Zr film deposited with substrate bias voltage under UV light irradiation, show the highest capacitance (784 pF) and the lowest leakage current density. The active oxygen species formed by UV irradiation are considered to play an important role in the reduction of the leakage current density, because they can reduce the density of oxygen vacancies.  相似文献   

20.
The difficulties in synthesizing phase pure BaTiO3 doped-(Na0.5Bi0.5)TiO3 are known. In this work, we reporting the optimized pulsed laser deposition (PLD) conditions for obtaining pure phase 0.92(Na0.5Bi0.5)TiO3-0.08BaTiO3, (BNT-BT0.08), thin films. Dielectric, ferroelectric and piezoelectric properties of BNT-BT0.08, thin films deposited by PLD on Pt/TiO2/SiO2/Si substrates are investigated in this paper. Perovskite structure of BNT-BT0.08 thin films with random orientation of nanocrystallites has been obtained by deposition at 600 °C. The relative dielectric constant and loss tangent at 100 kHz, of BNT-BT0.08 thin film with 530 nm thickness, were 820 and 0.13, respectively. Ferroelectric hysteresis measurements indicated a remnant polarization value of 22 μC/cm2 and a coercive field of 120 kV/cm. The piezoresponse force microscopy (PFM) data showed that most of the grains seem to be constituted of single ferroelectric domain. The as-deposited BNT-BT0.08 thin film is ferroelectric at the nanoscale level and piezoelectric.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号