首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We show that the dynamics of disordered charge density waves (CDWs) and spin density waves (SDWs) is a collective phenomenon. The very low temperature specific heat relaxation experiments are characterized by: (i) “interrupted” ageing (meaning that there is a maximal relaxation time); and (ii) a broad power-law spectrum of relaxation times which is the signature of a collective phenomenon. We propose a random energy model that can reproduce these two observations and from which it is possible to obtain an estimate of the glass cross-over temperature (typically T g≃ 100-200 mK). The broad relaxation time spectrum can also be obtained from the solutions of two microscopic models involving randomly distributed solitons. The collective behavior is similar to domain growth dynamics in the presence of disorder and can be described by the dynamical renormalization group that was proposed recently for the one dimensional random field Ising model [D.S. Fisher, P. Le Doussal, C. Monthus, Phys. Rev. Lett. 80, 3539 (1998)]. The typical relaxation time scales like ∼τexp(T g/T). The glass cross-over temperature Tg related to correlations among solitons is equal to the average energy barrier and scales like T g∼ 2xξΔ. x is the concentration of defects, ξ the correlation length of the CDW or SDW and Δ the charge or spin gap. Received 12 December 2001  相似文献   

2.
The temperature dependence of the energy relaxation time τe (T) of a two-dimensional electron gas at an AlGaAs/GaAs heterointerface is measured under quasiequilibrium conditions in the region of the transition from scattering by acoustic phonons to scattering with the participation of optical phonons. The temperature interval of constant τe, where scattering by the deformation potential predominates, is determined. In the preceding, low-temperature region, where piezoacoustic and deformation-potential-induced scattering processes coexist, τ e decreases slowly with increasing temperature. Optical phonons start to participate in the scattering processes at T∼25 K (the characteristic phonon lifetime was equal to τLOτ4.5 ps). The energy losses calculated from the τe data in a model with an effective nonequilibrium electron temperature agree with the published data obtained under strong heating conditions. Pis’ma Zh. éksp. Teor. Fiz. 64, No. 5, 371–375 (10 September 1996)  相似文献   

3.
Various experimental techniques have revealed that the predominant intrinsic point defects in BaF2 are anion Frenkel defects. Their formation, enthalpy and entropy, as well as the corresponding parameters for the fluorine vacancy and fluorine interstitial motion have been determined. In addition, low temperature dielectric relaxation measurements in BaF2doped with uranium leads to the parameters τ0, E in the Arrhenius relation τ = τ0 exp(E/k B T) for the relaxation time τ. For the relaxation peak associated with a single tetravalent uranium, the migration entropy deduced from the pre-exponential factor τ0 is smaller than the anion Frenkel defect formation entropy by almost two orders of magnitude. We show that, despite their great variation, the defect entropies and enthalpies are interconnected through a model based on anharmonic properties of the bulk material which have been recently studied by employing density-functional theory and density-functional perturbation theory.  相似文献   

4.
The glass transition temperature and the dynamics of the α-process have been investigated using dielectric relaxation spectroscopy for single and stacked thin films of poly(2-chlorostyrene) (P2CS). The stacked film consists of 10 layers of single thin films with thickness of 12 nm or 18 nm. The glass transition temperature T g of the single thin films of P2CS is found to decrease with decreasing film thickness in a similar way as observed for polystyrene thin films. The magnitude of the depression of T g for the stacked thin films is larger than that of the single thin films with corresponding thickness. The depression of the temperature at which the dielectric loss shows a peak due to the α-process at a given frequency, T α, is larger than that of the single thin films, although the magnitude is smaller than that of T g . Annealing at a high temperature could cause the T g and T α of the stacked thin films to approach the values of the bulk system.  相似文献   

5.
The closeness of low-lying T1u and T1g levels of C 60 could enable their mixing under an odd parity vibration of (T1 u + T1 g ⊗ (hg + τ1 u)type. In addition, the two levels are susceptible to Jahn-Teller interaction due to five-fold degenerate hg vibrations. This complex problem of (T1u+T1g)⊗(hg1u) vibronic interaction is transformed to a form similar to T2g ⊗ (εg + τ2g) vibronic problem of octahedral symmetry. The problem is analysed in an infinite coupling model and compared with the experimental spectroscopic results for the C 60 radical. The resulting parameters are used to calculate the pair-binding energy and superconducting transition temperature in C 60 n fullerides. Vibronic mixing with the T1g level is found to be responsible for maximising the pair-binding energy at the doping level n=3. It is also found to be an important source of Tc enhancement.  相似文献   

6.
We present a comprehensive study of gold nanoparticle embedding into polystyrene (PS) surfaces at temperatures ranging from T g + 8 K to T g − 83 K and times as long as 105 minutes. This range in times and temperatures allows the first concurrent observation of and differentiation between surface and bulk behavior in the 20nm region nearest the free surface of the polymer film. Of particular importance is the temperature region near the bulk glass transition temperature where both surface and bulk processes can be measured. The results indicate that for the case of PS, enhanced surface mobility only exists at temperatures near or below the bulk T g value. The surface relaxation times are only weakly temperature dependent and near T g , the enhanced mobility extends less than 10nm into the bulk of the film. The results suggest that both the concept of a “surface glass transition” and the use of glass transition temperatures to measure local mobility near interfaces may not universally apply to all polymers. The results can also be used to make a quantitative connection to molecular dynamics simulations of polymer films and surfaces.  相似文献   

7.
Pseudoelasticity caused by pseudotwinning in short-range ordered In-Pb alloys (6, 8 and 11.6 at. % Pb) is studied in the temperature range 0.48–180 K. The mechanical hysteresis parameters, namely, the thermodynamic stress τ T which provides the reversibility of plastic deformation and the frictional stress τ f which characterizes the resistance offered by crystal lattice and its defects to twin boundaries motion are estimated. It is found that athermal processes determine the reversible deformation: the mechanical parameters τ T and τ f do not depend on temperature and strain rate. The stress τ T increases and the stress τ f decreases with increasing Pb content. One of the main conditions of the exhibition of superelasticity is the fulfillment of the inequality τ T f .  相似文献   

8.
The specific features of the dielectric spectra of statistical mixtures in the form of heterogeneous systems with spherical particles chaotically arranged in the space have been investigated. The distribution function of relaxation times f(τ) has been restored. It has been established that the relaxation times are continuously distributed within a wide interval [τ1, τ2]. Different methods for broadening the relaxation time distribution interval and approximating the relaxation time distribution function f(τ) have been analyzed. It has been demonstrated that f(τ) is a nonmonotonic function with two maxima at the boundaries and a minimum in the vicinity of the midpoint of the interval [τ1, τ2]. These features of the relaxation time distribution function are responsible for the large difference between the average relaxation frequencies of the permittivity and the dielectric loss (electrical conductivity).  相似文献   

9.
The enthalpy relaxation of polymer-silica nanocomposites prepared by simultaneous polymerization of poly(2-hydroxyethyl methacrylate) (PHEMA) and tetraethyloxysilane, TEOS, a silica precursor, is investigated. Both the glass transition temperature, Tg, and the temperature interval of the glass transition, ΔT g , increase as the silica content in the sample does. Structural relaxation experiments show that the temperature interval in which conformational motions take place broadens as the silica content in the hybrid increases. A phenomenological model based on the evolution of the configurational entropy during the structural relaxation process, the SC model, has been used for determining the temperature dependence of the relaxation times during the process. The results show an increase of the fragility of the polymer as the silica content increases, a feature that can be related to the broadening of the distribution of relaxation times characterized by the β parameter of the stretched exponential distribution. On another hand the silica content increase produces a significant change of the relaxation times in the glassy state.  相似文献   

10.
A phenomenological analysis of the ortho-positronium (o-Ps) annihilation from positron annihilation lifetime spectroscopy (PALS) and the dynamics from broadband dielectric spectroscopy (BDS) are reported on a small molecular glass former of intermediate H-bonding and fragility: salol. The dielectric spectra extend over a very broad frequency range of about 2 × 10−2−3.5 × 1011 Hz, providing information on the α-relaxation, the secondary relaxation giving rise to the excess wing, and the shallow high-frequency minimum in the micro- to milli-meter wave range. A number of empirical correlations between the o-Ps lifetime, τ 3(T), and the various spectral and relaxation features have been observed. Thus, the phenomenological evaluation of the τ 3(T) dependence of the PALS response of the amorphous sample reveals three characteristic PALS temperatures: T g PALS, T b1 L = 1.15T g PALS and T b2 L = 1.25T g PALS, which are discussed in relation to similar findings for some typical small molecular vdW- and H-bonded glass formers. A slighter change of the slope at T b1 L appears to be related to the transition from excess wing to the primary α-process-dominated behavior, with the secondary process dominating in the deeply supercooled liquid state below T b1 L . The high-temperature plateau effect in the τ 3(T) plot occurs at T b2 L and agrees with the characteristic Stickel temperature, T B ST, marking a qualitative change of the primary α process, but it does not follow the relation T b2 L < T α [τ 3(T b2) < τ α ]. Both effects at T b1 L and T b2 L correlate with two crossovers in the spectral shape and related non-exponentiality parameter of the structural relaxation, β KWW. Finally, the application of the two-order parameter (TOP) model to the structural relaxation as represented by the primary α relaxation times from BDS leads to the characteristic TOP temperature, T m c , close to T b1 from PALS. Within this model the phenomenological interpretation is offered based on changes in the probability of occurrence of solid-like and liquid-like domains to explain the dynamic as well as PALS responses. In summary, all the empirical correlations support further very close connections between the PALS response and the dielectric relaxation behavior in small molecule glass formers.  相似文献   

11.
Attenuation of the signals of the nutation echo of E’-centers in crystalline and glass quartz was experimentally investigated at room temperature. The nutation echo in EPR was excited in the single-photon regime and formed by two Zeeman-field pulses with duration t1 and t2 (t1<t2) and time interval between them τ. The echo signal was recorded during the second pulse at t≈2t1+τ. It was established that this signal attenuation, measured as t1 increased, follows an, exponential law, its rate Γ is much less than 1/T2 (T2 is the transverse relaxation time), and it linearly increases with an increase in the amplitude of the exciting SHF field B1. The parameters of the dependence of Γ on B1 correlate with the parameters of the analogous dependence revealed previously for attenuation of nutation of E’-centers in quartz in the two-photon regime at T=4.2 K. At the same time, the value of Γ measured with different values of τ is independent of B1 and is equal to 1/T1, where T1 is the longitudinal relaxation time. A. N. Sevchenko Scientific Research Institute of Applied Physical Problems, 7, Kurchatov St., Minsk, 220064, Belarus. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 65, No. 3, pp. 405–411, May–June, 1998.  相似文献   

12.
The aim of this study is to obtain further information about the source of proton relaxation in the Mn(II)-human serum albumin complex. For this purpose, proton relaxation rates in albumin solutions 1/T 1 and 1/T 2 were measured versus increasing amounts of manganese [Mnt]. The fractions of manganese bound to albumin [Mnb] and free manganese [Mnf] were then determined from proton relaxation rate enhancement data. Paramagnetic contributions of bound manganese to the observed relaxation rates (1/T 1p*)b and (1/T 2p*)b were also determined. Finally, the (1/T 2p*)b/(1/T 1p*)b ratio was used in a derived equation to estimate an effective correlation time τ. Mean τ value of the complex was found to be in the order of 3 ns, while the hydration number of bound manganese q was estimated to be about 4. The 1/τ was found to be the sum of the inverse values of rotational correlation time 1/τ r, mean residence time of water in hydration spheres of the complex 1/τ m, and longitudinal electronic relaxation time of manganese 1/τ s in the complex. In conclusion, the relaxation mechanism in albumin solutions containing Mn(II) can be interpreted through dipolar and scalar interactions modulated by τ r, τ m and τ s. This analysis enables one to get reasonable figures for the τ r and q of Mn(II) in albumin solution.  相似文献   

13.
Results of spectroscopic investigations into plasma of a pulse-periodic strontium vapor laser operating in the superradiance mode on the infrared transition at λ = 6.45 μm are presented. The method of determining the electron temperature and concentration as well as the gas temperature – T e , n e , and T g – based on measuring the absolute intensities of some SrI and SrII and buffer gas (helium or neon) spectral lines is used. Time dependences of the line intensities during a current pulse (τ = 150 ns) and near afterglow (up to 3 μs) are obtained under conditions of non-equilibrium plasma ionization and recombination. The optical system collects radiation from the entire length of the plasma column by means of separating radial volume zones, includingthe central zone and the zone closer to the walls, with the monochromator slit. The results obtained allow us not only to calculate T e , n e , and T g values, but also to trace the spatiotemporal plasma evolution.  相似文献   

14.
1H spin-lattice relaxation rate (T 1 −1 ) has been measured using inversion recovery technique in polycrystalline (NH4)2SbF5 system in the temperature range 140–400 K. From the plot of log (M 0M) againstτ, we have estimated two differentT 1 corresponding to two inequivalent ammonium ions in the unit cell. Temperature-dependence ofT 1 in each case exhibits features of double minima indicating the influence of different correlation times corresponding to different types of motion. Activation energies at different temperature regions have been estimated. Some features of dynamics of motion of the different groups of ions across the phase transitions have been discussed.  相似文献   

15.
The relaxation behaviour of two molecular glass-forming systems, namely sorbitol and maltitol, are investigated in the large temperature range relevant to the glass-transition. These data are obtained by combining three techniques, i.e. low-frequency mechanical spectroscopy, medium and high frequency dielectric spectroscopy, and viscosity measurements. This procedure allows to determine the relaxation map of these polyols on a wide time range [10-9-107 s]. Two different relaxation processes can be observed. The principal α-relaxation process exhibits a complex behaviour, comprising a non-Arrhenius temperature dependence above T g (supercooled liquid state), and an Arrhenius behaviour below T g (glassy state). A secondary β-relaxation is observed at higher frequencies with an Arrhenius temperature dependence. The secondary process appears in the same time-temperature range in both polyols. Consequently the molecular root of this relaxation is most likely the same in these complementary chemical systems. On the other hand, the time scale on which the α and β processes cross is very different for these two polyols. We relate this feature to the differences in the relative contributions of intra and inter-molecular interactions due to the different chemical architecture of these polyols.  相似文献   

16.
The molecular dynamics in thin films (18 nm-137 nm) of isotactic poly(methyl methacrylate) (i-PMMA) of two molecular weights embedded between aluminium electrodes are measured by means of dielectric spectroscopy in the frequency range from 50 mHz to 10 MHz at temperatures between 273 K and 392 K. The observed dynamics is characterized by two relaxation processes: the dynamic glass transition (α-relaxation) and a (local) secondary β-relaxation. While the latter does not depend on the dimensions of the sample, the dynamic glass transition becomes faster (≤2 decades) with decreasing film thickness. This results in a shift of the glass transition temperature T g to lower values compared to the bulk. With decreasing film thickness a broadening of the relaxation time distribution and a decrease of the dielectric strength is observed for the α-relaxation. This enables to deduce a model based on immobilized boundary layers and on a region displaying a dynamics faster than in the bulk. Additionally, T g was determined by temperature-dependent ellipsometric measurements of the thickness of films prepared on silica. These measurements yield a gradual increase of T g with decreasing film thickness. The findings concerning the different thickness dependences of T g are explained by changes of the interaction between the polymer and the substrates. A quantitative analysis of the T g shifts incorporates recently developed models to describe the glass transition in thin polymer films. Received 12 August 2001 and Received in final form 16 November 2001  相似文献   

17.
An anisotropic EPR spectrum at T = 4 K was observed in silicon samples irradiated by phosphorus ions and subsequently annealed at 1000°C. Epitaxial silicon layers with a natural isotope composition and enriched by 28Si isotope grown on a natural silicon wafer were investigated. The spectrum consisted of three lines corresponding to different g-factor components: g x ,g y , and g z . The central line was overlapped by the isotropic line coinciding by its g-factor with the line of the conduction electrons in silicon. The shape of the spectral lines indicated that the spectrum was due to the paramagnetic centers which belong to the randomly oriented clusters with the anisotropic g-factor. The nature of the anisotropic EPR spectrum is due to the electrons localized on donors located in the strained phosphorous clusters. The strains were caused by either incompletely annealed defects after the phosphorous implantation (E = 40 keV, D = 2 × 1014 cm−2, T ann = 1000°C, 1 h) or phosphorous atoms in clusters. The distance between the components strongly depended on the temperature and microwave power and decreased as they increased.  相似文献   

18.
The relaxation of the superconducting transition temperature T c in YBa2Cu3O6.38 is investigated with increasing oxygen order in the CuOx plane under 1 GPa pressure and with decreasing oxygen order after the pressure is relieved. It is established that the oxygen disordering process is more rapid than the pressure-induced ordering process: The ratio of the relaxation times of T c in these processes τ ord/τ disord≈5. This behavior could be caused by different mechanisms of the pressure-induced increase in the Cu-O chain length and decrease of this length after pressure relief. Fiz. Tverd. Tela (St. Petersburg) 40, 1968–1973 (November 1998)  相似文献   

19.
Measurements have been made of the Hall coefficientR of some alloys of silver in palladium over the temperature range 1°K to 120°K. The alloys contain between ∼1 and ∼10 at.-% silver. Values ofR were also obtained at room temperature and these were in good agreement with earlier published work. The values ofR are negative in all the alloys, and |R| increases both on reducing the temperature and increasing the silver concentration,c. Below ∼10°K, |R| becomes independent of temperature but shows a linear dependence onc, increasing by a factor of 2.5 over the concentration range measured. This increase is too great to be accounted for in terms of band structure changes alone, so we have examined the effects of anisotropic impurity scattering. To a first approximation it can be shown thatR is proportional to an anisotropy parameterA, defined asA=〈τ 2(k)〉/〈τ(k)〉2, whereτ(k) represents the relaxation time of an electron in a statek, and 〈〉 is an average over the Fermi surface. In palladium we assume that the majority of the current is carried by the s-electrons. In the presence of silver impurities these electrons can be scattered into s-states or d-states with relaxation times given byτ ss α1/c(1−c) andτ sd α1/c 2(1−c) respectively. FollowingPlate we have assumed thatτ ss is isotropic and thatτ sd is anisotropic, leading to an overall anisotropic relaxation time for impurity scattering. We then find the parameterA increases approximately linearly with silver content, in accordance with our experimental results.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号