首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of the irradiation with Al Kα X-rays during an XPS measurement upon the surface vanadium oxidation state of a fresh in vacuum cleaved V2O5(0 0 1) crystal was examined. Afterwards, the surface reduction of the V2O5(0 0 1) surface under Ar+ bombardment was studied. The degree of reduction of the vanadium oxide was determined by means of a combined analysis of the O1s and V2p photoelectron lines. Asymmetric line shapes were needed to fit the V3+2p photolines, due to the metallic character of V2O3 at ambient temperature. Under Ar+ bombardment, the V2O5(0 0 1) crystal surface reduces rather fast towards the V2O3 stoichiometry, after which a much slower reduction of the vanadium oxide occurs.  相似文献   

2.
W. Gao 《Surface science》2006,600(12):2572-2580
The interaction of vanadium oxide with epitaxial anatase films exposing (1 0 1) terraces was characterized. The TiO2 films were grown on vicinal LaAlO3 (1 1 0) substrates by oxygen plasma-assisted molecular beam epitaxy (OPA-MBE); reflection high energy and low energy electron diffraction (RHEED and LEED) indicated that the films exposed (1 0 1) terraces of the anatase TiO2 polymorph. When a vanadium oxide monolayer was deposited onto the anatase surface by OPA-MBE at 725 K, only (1 × 1) RHEED and LEED patterns were observed. The V X-ray photoelectron spectroscopy (XPS) peak intensities indicated that the monolayer wetted the anatase surface and so the diffraction patterns were attributed to an epitaxial vanadia layer. Analysis of the vanadium oxide monolayer by X-ray and ultraviolet photoelectron spectroscopies revealed that the V was predominantly 5+. When the vanadia coverage was increased at 725 K, Auger electron spectra showed only very slow attenuation of the anatase Ti peaks while spots began to develop in RHEED patterns recorded along the LaAlO3 direction; both indicative of 3-D cluster formation. In the orthogonal direction, the RHEED patterns showed unusual diagonal streaks. Meanwhile, the (1 × 1) LEED pattern persisted even after 30 nm of vanadia was deposited. This was attributed to gaps between the 3-D clusters exposing the epitaxial monolayer. Core level XPS spectra of the 3-D clusters revealed a broad V 2p3/2 peak that was centered at the position expected for V4+ but could be deconvoluted into three peaks corresponding to V3+, V4+, and V5+. It is shown that crystallographic shear that accommodates such variations in the oxygen content of V oxides can lead to the diagonal streaks in RHEED patterns recorded along the LaAlO3 [0 0 1] direction even as the pattern in the orthogonal direction shows sharp transmission spots. The results show that vanadia growth on anatase (1 0 1) proceeds through the Stranski-Krastanov mode with a strong vanadia-titania interaction stabilizing a dispersed vanadia monolayer. The results are compared with previous data for vanadia growth on anatase (0 0 1) where smooth, epitaxial VO2 films grow ad infinitum.  相似文献   

3.
Epitaxial In2O3 films have been deposited on Y-stabilized ZrO2 (YSZ) (1 0 0) substrates by metalorganic chemical vapor deposition (MOCVD). The films were deposited at different substrate temperatures (450-750 °C). The film deposited at 650 °C has the best crystalline quality, and observation of the interface area shows a clear cube-on-cube epitaxial relationship of In2O3(1 0 0)||YSZ(1 0 0) with In2O3[0 0 1]||YSZ[0 0 1]. The Hall mobility of the single-crystalline In2O3 film deposited at 650 °C is as high as 66.5 cm2 V−1 s−1 with carrier concentration of 1.5 × 1019 cm−3 and resistivity of 6.3 × 10−3 Ω cm. The absolute average transmittance of the obtained films in the visible range exceeds 95%.  相似文献   

4.
Well ordered V2O3(0 0 0 1) films were prepared on Au(1 1 1) and W(1 1 0) substrates. These films are terminated by a layer of vanadyl groups under typical UHV conditions. Reduction by electron bombardment may remove the oxygen atoms of the vanadyl layer, leading to a surface terminated by vanadium atoms. The interaction of oxygen with the reduced V2O3(0 0 0 1) surface has been studied in the temperature range from 80 to 610 K. Thermal desorption spectroscopy (TDS), infrared reflection absorption spectroscopy (IRAS), high resolution electron energy loss spectroscopy (HREELS), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) were used to study the adsorbed oxygen species. Low temperature adsorption of oxygen on reduced V2O3(0 0 0 1) occurs both dissociatively and molecularly. At 90 K a negatively charged molecular oxygen species is observed. Upon annealing the adsorbed oxygen species dissociates, re-oxidizing the reduced surface by the formation of vanadyl species. Density functional theory was employed to calculate the structure and the vibrational frequencies of the O2 species on the surface. Using both cluster and periodic models, the surface species could be identified as η2-peroxo () lying flat on surface, bonded to the surface vanadium atoms. Although the O-O vibrational normal mode involves motions almost parallel to the surface, it can be detected by infrared spectroscopy because it is connected with a change of the dipole moment perpendicular to the surface.  相似文献   

5.
We have studied adsorption of CO on Fe3O4(1 1 1) films grown on a Pt(1 1 1) substrate by temperature programmed desorption (TPD), infrared reflection absorption spectroscopy (IRAS) and high resolution electron energy loss spectroscopy (HREELS). Three adsorption states are observed, from which CO desorbs at ∼110, 180, and 230 K. CO adsorbed in these states exhibits stretching frequencies at ∼2115-2140, 2080 and 2207 cm−1, respectively. The adsorption results are discussed in terms of different structural models previously reported. We suggest that the Fe3O4(1 1 1) surface is terminated by 1/2 ML of iron, with an outermost 1/4 ML consisting of octahedral Fe2+ cations situated above an 1/4 ML of tetrahedral Fe3+ ions, in agreement with previous theoretical calculations. The most strongly bound CO is assigned to adsorption to Fe3+ cations present on the step edges.  相似文献   

6.
The normal incidence X-ray standing wave (NIXSW) technique has been applied to investigate the structure of ultra-thin VOx films grown on TiO2(1 1 0) and pre-characterised by core level photoemission. For a film composed of a sub-monolayer coverage of V deposited in ultra-high vacuum the local structure of two coexistent species, labelled ‘oxidic’ and ‘metallic’, has been investigated independently through the use of chemical-shift-NIXSW. The ‘oxidic’ state is shown to be consistent with a mixture of epitaxial or substitutional sites and chemisorption into sites coordinated to three surface O atoms. The metallic V atoms also involve a mixture of chemisorption and second-layer sites above the substrate surface consistent with the formation of small V clusters. VOx films up to ∼6 atomic layers were also grown by post-oxidation (sequential V deposition and annealing in oxygen) and by reactive evaporation in a partial pressure of oxygen. While films of around one monolayer or less are consistent with epitaxial VO2 growth, the film quality deteriorates rapidly with increasing thickness and is worse for reactive evaporation. A possible interpretation of the NIXSW data is increasing contributions of V2O3 crystallites. The inferior quality of the reactively evaporated films may be due to an insufficient supply of oxygen.  相似文献   

7.
Scanned-energy mode photoelectron diffraction (PhD), using the O 1s and V 2p photoemission signals, together with multiple-scattering simulations, have been used to investigate the structure of the V2O3(0 0 0 1) surface. The results support a strongly-relaxed half-metal termination of the bulk, similar to that found in earlier studies of Al2O3(0 0 0 1) and Cr2O3(0 0 0 1) surfaces based on low energy electron and surface X-ray diffraction methods. However, the PhD investigation fails to provide definitive evidence for the presence or absence of surface vanadyl (VO) species associated with atop O atoms on the surface layer of V atoms. Specifically, the best-fit structure does not include these vanadyl species, although an alternative model with similar relaxations but including vanadyl O atoms yields a reliability-factor within the variance of that of the best-fit structure.  相似文献   

8.
STM, STS, LEED and XPS data for crystalline θ-Al2O3 and non-crystalline Al2O3 ultra-thin films grown on NiAl(0 0 1) at 1025 K and exposed to water vapour at low pressure (1 × 10−7-1 × 10−5 mbar) and room temperature are reported. Water dissociation is observed at low pressure. This reactivity is assigned to the presence of a high density of coordinatively unsaturated cationic sites at the surface of the oxide film. The hydroxyl/hydroxide groups cannot be directly identify by their XPS binding energy, which is interpreted as resulting from the high BE positions of the oxide anions (O1s signal at 532.5-532.8 eV). However the XPS intensities give evidence of an uptake of oxygen accompanied by an increase of the surface coverage by Al3+ cations, and a decrease of the concentration in metallic Al at the alloy interface. A value of ∼2 for the oxygen to aluminium ions surface concentration ratio indicates the formation of an oxy-hydroxide (AlOxOHy with x + y ∼ 2) hydroxylation product. STM and LEED show the amorphisation and roughening of the oxide film. At P(H2O) = 1 × 10−7 mbar, only the surface of the oxide film is modified, with formation of nodules of ∼2 nm lateral size covering homogeneously the surface. STS shows that essentially the valence band is modified with an increase of the density of states at the band edge. With increasing pressure, hydroxylation is amplified, leading to an increased coverage of the alloy by oxy-hydroxide products and to the formation of larger nodules (∼7 nm) of amorphous oxy-hydroxide. Roughening and loss of the nanostructure indicate a propagation of the reaction that modifies the bulk structure of the oxide film. Amorphisation can be reverted to crystallization by annealing under UHV at 1025 K when the surface of the oxide film has been modified, but not when the bulk structure has been modified.  相似文献   

9.
Dissociative chemisorption of O2 on Cu(1 0 0), S/Cu(1 0 0) and Ag/Cu(1 0 0) surface alloy has been investigated by Auger electron spectroscopy (AES). A strong reduction in the initial O2 chemisorption probability (S0) from 0.05 to 7.4 × 10−3 is observed already at an Ag coverage of 0.02 ML. Further Ag deposition results only in a moderate decrease in S0. Similar inhibition of O2 dissociation is observed on S/Cu(1 0 0). It is concluded that at very low Ag coverages, the reduced reactivity of Ag/Cu(1 0 0) towards O2 dissociation is primarily due to the steric blocking of the surface defects and that any electronic effects are only secondary and present only at higher Ag coverages.  相似文献   

10.
The compositional and thermal dependencies of phase and electrical behaviour of compositions in the system Bi14W1 − xLaxO24 − 3x/2 (0.00 < x < 1.00) have been studied by X-ray powder diffraction, differential thermal analysis and a.c. impedance spectroscopy. The system exhibits polymorphism and phase separation, which shows both compositional and thermal dependence. Compositions with x = 0.25 and x = 0.50 exhibit a single phase tetragonal structure at room temperature. In contrast, the x = 0.75 composition at room temperature shows a mixture of a cubic phase and a secondary β-Bi2O3 related tetragonal phase. A full solid solution is observed at high temperatures, corresponding to the occurrence of a δ-Bi2O3 type phase. The appearance of the various phases correlates well with the observed electrical behaviour. The x = 0.75 composition exhibits exceptionally high conductivity at high temperatures (σ800 = 1.34 S cm− 1), but also shows significant phase separation at lower temperatures.  相似文献   

11.
The growth and the electronic properties of Ba ultra-thin films (coverage ≤ 2 ML) on the SrTiO3(1 0 0) surface was studied using synchrotron radiation facilities. The investigation was carried out mainly by soft X-ray photoelectron spectroscopy measurements at low core levels and the valence band region. The results show that the Ba overlayer develops in a layer-by-layer mode. The first two layers do not create any states in the band gap, thus leaving intact the insulating character of the substrate. This is due to the oxidation of Ba through transfer of O2− anions from the substrate into the Ba overlayer. It is observed that the valency of the Ti atoms at the interface does not change. This is attributed to an outwards diffusion of O2− anions from deeper layers promoted by substrate annealing. Within the coverage examined, no evidence for Ba metallization is found, contrary to what happens on metallic substrates. Comparing the results of this work with previous ones on similar metal–SrTiO3(1 0 0) adsorption systems, it is concluded that a single factor such as charge transfer or thermodynamic stability is not always sufficient to determine the oxidation process of the adsorbate layer. Kinetics on surfaces as well as substrate doping and defects can also play a decisive role.  相似文献   

12.
In analogy with the case of Sr on Si [Y. Liang, S. Gan, M. Engelhard, Appl. Phys. Lett. 79 (2001) 3591], we studied surface crystallinity and oxidation behaviour of clean and Ba terminated Ge(1 0 0) surfaces as a function of oxygen pressure and temperature. The structural and chemical changes in the Ge surface layer were monitored by LEED, XPS and real-time RHEED. In contrast to the oxidation retarding effect, observed for 1/2 monolayer of Sr on Si, the presence of a Ba termination layer leads to a pronounced increase in Ge oxidation rate with respect to clean Ge. In fact, while the Ge(1 0 0) surface terminated with 1/2 ML Ba amorphizes for a pO2 of 10−2 Torr, LEED indicates that clean Ge forms a thin (4.5 Å), 1 × 1 ordered oxide upon aggressive O2 exposure (150 Torr, 200 °C, 30 min). We briefly discuss the origins for the difference in behaviour between Ba on Ge and Sr on Si.  相似文献   

13.
Epitaxial Ti0.97Co0.03O2:Sb0.01(TCO:Sb) films were deposited on R-Al2O3 (1 1 0 2) substrates at 500 °C in various deposition pressures by pulsed laser deposition. The solubility of cobalt within the films increases with decreasing deposition pressure at a deposition temperature of 500 °C. The TCO:Sb films deposited at 5×10−6 Torr exhibit a p-type anomalous Hall effect having a hole concentration of 6.1×1022/cm3 at 300 K. On the other hand, films deposited at 4×10−4 Torr exhibits an n-type anomalous Hall effect having an electron concentration of about 1.1×1021/cm3. p- or n-type DMS characteristics depends on the change of the structure of TCO:Sb films and the solubility of Co is possible by controlling the deposition pressure.  相似文献   

14.
Magnetotransport properties of magnetite thin films deposited on gallium arsenide and sapphire substrates at growth temperatures between 473 and 673 K are presented. The films were grown by UV pulsed laser ablation in reactive atmospheres of O2 and Ar, at working pressure of 8 × 10−2 Pa. Film stoichiometry was determined in the range from Fe2.95O4 to Fe2.97O4. Randomly oriented polycrystalline thin films were grown on GaAs(1 0 0) while for the Al2O3(0 0 0 1) substrates the films developed a (1 1 1) preferred orientation. Interfacial Fe3+ diffusion was found for both substrates affecting the magnetic behaviour. The temperature dependence of the resistance and magnetoresistance of the films were measured for fields up to 6 T. Negative magnetoresistance values of ∼5% at room temperature and ∼10% at 90 K were obtained for the as-deposited magnetite films either on GaAs(1 0 0) or Al2O3(0 0 0 1).  相似文献   

15.
Jinyi Han 《Surface science》2006,600(13):2752-2761
The interaction of O2 with Pd(1 1 1), Pd(1 1 0) and Pd(1 0 0) was studied in the pressure range 1-150 Torr by the techniques of temperature programmed decomposition (TPD), Auger electron spectroscopy (AES) and low energy electron diffraction (LEED). The oxidation of Pd was rate-determined by oxygen diffusion into Pd metal followed by the diffusion into PdO once the bulk oxide layer was formed. The dissolution of oxygen atoms into Pd metal followed the Mott-Cabrera model with diffusion coefficient 10−16 cm2 s−1 at 600 K and activation energy of 60-85 kJ mol−1. The bulk oxide phase was formed when a critical oxygen concentration was reached in the near-surface region. The formation of PdO was characterized by a decrease in the oxygen uptake rate, the complete fading of the metallic Pd LEED pattern and an atomic ratio O/Pd of 0.15-0.7 as measured by AES. The diffusion of oxygen through the bulk oxide layer again conformed to the Mott-Cabrera parabolic diffusion law with diffusion coefficient 10−18 cm2 s−1 at 600 K and activation energy of 111-116 kJ mol−1. The values for the diffusion coefficient and apparent activation energy increased as the surface atom density of the single crystals increased.  相似文献   

16.
X-ray photoelectron spectroscopy was applied to study the hydroxylation of α-Al2O3 (0 0 0 1) surfaces and the stability of surface OH groups. The evolution of interfacial chemistry of the α-Al2O3 (0 0 0 1) surfaces and metal/α-Al2O3 (0 0 0 1) interfaces are well illustrated via modifications of the surface O1s spectra. Clean hydroxylated surfaces are obtained through water- and oxygen plasma treatment at room temperature. The surface OH groups of the hydroxylated surface are very sensitive to electron beam illumination, Ar+ sputtering, UHV heating, and adsorption of reactive metals. The transformation of a hydroxylated surface to an Al-terminated surface occurs by high temperature annealing or Al deposition.  相似文献   

17.
The formation and optical response of VOx nanoparticles embedded in amorphous aluminium oxide (Al2O3) thin films by pulsed laser deposition is studied. The thin films have been grown by alternate laser ablation of V and Al2O3 targets, which has resulted in a multilayer structure with embedded nanoparticles. The V content has been varied by changing the number of pulses on the V target. It is found that VOx nanoparticles with dimensions around 5 nm have been formed. The structural analysis shows that the vanadium nanoparticles are oxidized, although probably there is not a unique oxide phase for each sample. The films show a different optical response depending on their vanadium content. Optical switching as a function of temperature has been observed for the two films with the highest vanadium content, at transition temperatures of about −20 °C and 315 °C thus suggesting the presence of nanoparticles with compositions V4O7 and V2O5, respectively.  相似文献   

18.
Melilite type ceramics ABC3O7 such as La1.54Sr0.46Ga3O7.27 are a new class of oxide conductors where the conductivity is carried out through interstitial oxygen ions. This work presents the attempt to replace the A-site element La with the other lanthanide elements and Y, resulting in various Ln1 + xSr1 − xGa3O7 + x/2 ceramics, in which Ln = La, Pr, Nd, Sm, Eu, Gd, Dy, Yb, Y, and 0.1 < x < 0.54. X-ray diffraction analysis shows that the melilite structure could be formed when the replacement is conducted with most lanthanides but not Yb and Y. Impedance spectroscopy demonstrates that the conductivity decreases dramatically with the decreasing of Ln3+ size and the charge-carrier concentration. These results suggest that, as an interstitial oxide ion electrolyte, La1.54Sr0.46Ga3O7.27 is the most promising ceramic in the Ln1 + xSr1 − xGa3O7+x/2 melilite family since La3+ has the largest ionic radius of the lanthanide elements.  相似文献   

19.
Jooho Kim  Bruce E. Koel 《Surface science》2006,600(19):4622-4632
Nanosized gold particles supported on reducible metal oxides have been reported to show high catalytic activity toward CO oxidation at low temperature. This has generated great scientific and technological interest, and there have been many proposals to explain this unusual activity. One intriguing explanation that can be tested is that of Nørskov and coworkers [Catal. Lett. 64 (2000) 101] who suggested that the “unusually large catalytic activity of highly-dispersed Au particles may in part be due to high step densities on the small particles and/or strain effects due to the mismatch at the Au-support interface”. In particular, their calculations indicated that the Au(2 1 1) stepped surface would be much more reactive towards O2 dissociative adsorption and CO adsorption than the Au(1 1 1) surface. We have now studied the adsorption of O2 and O3 (ozone) on an Au(2 1 1) stepped surface. We find that molecular oxygen (O2) was not activated to dissociate and produce oxygen adatoms on the stepped Au(2 1 1) surface even under high-pressure (700 Torr) conditions with the sample at 300-450 K. Step sites do bind oxygen adatoms more tightly than do terrace sites, and this was probed by using temperature programmed desorption (TPD) of O2 following ozone (O3) exposures to produce oxygen adatoms up to a saturation coverage of θO = 0.90 ML. In the low-coverage regime (θO ? 0.15 ML), the O2 TPD peak at 540 K, which does not shift with coverage, is attributed to oxygen adatoms that are bound at the steps on the Au(2 1 1) surface. At higher coverages, an additional lower temperature desorption peak that shifts from 515 to 530 K at saturation coverage is attributed to oxygen adsorbed on the (1 1 1) terrace sites of the Au(2 1 1) surface. Although the desorption kinetics are likely to be quite complex, a simple Redhead analysis gives an estimate of the desorption activation energy, Ed, for the step-adsorbed oxygen of 34 kcal/mol and that for oxygen at the terraces near saturation coverage of 33 kcal/mol, values that are similar to others reported on Au surfaces. Low Energy Electron Diffraction (LEED) indicates an oxygen-induced step doubling on the Au(2 1 1) surface at low-coverages (θO = 0.08-0.17 ML) and extensive disruption of the 2D ordering at the surface for saturation coverages of oxygen (θO ? 0.9 ML). Overall, our results indicate that unstrained step sites on Au(2 1 1) surfaces of dispersed Au nanoparticles do not account for the novel reactivity of supported Au catalysts for CO oxidation.  相似文献   

20.
xV2O5xCeO2–(30−x)PbO–(70−x) B2O3 glasses are synthesized by using the melt quench technique. The number of studies such as XRD, density, molar volume, optical band gap, refractive index and FTIR spectroscopy are employed to characterize the glasses. The band gap decreases from 2.20 to 1.78 eV and density increases from 3.49 to 4.25 g/cm3. FTIR spectroscopy reveals that incorporation of V2O5 in glass network helps to convert the structural units of [BO3] into [BO4]. At higher concentration of vanadium, VO vibration of [VO5] structural units and V–O–V vibration are present. The bond ionicity of glasses increases with incorporation of V2O5 contents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号