共查询到20条相似文献,搜索用时 0 毫秒
1.
The interaction of NO with TiO2(1 1 0) Ar+-ion-bombarded surfaces has been studied by X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, Auger electron spectroscopy. Surfaces with different degrees of defects have been characterized by monitoring the evolution of the electronic structure of the surface, with the aim of studying the influence of the surface defects on the interaction with NO. The interaction was studied for exposures up to 500 L. However, the main effects occur already in the first 10 L. The exposure of the surfaces to NO resulted in the removal of defect sites without adsorption of N. 相似文献
2.
The normal incidence X-ray standing wave (NIXSW) technique has been applied to investigate the structure of ultra-thin VOx films grown on TiO2(1 1 0) and pre-characterised by core level photoemission. For a film composed of a sub-monolayer coverage of V deposited in ultra-high vacuum the local structure of two coexistent species, labelled ‘oxidic’ and ‘metallic’, has been investigated independently through the use of chemical-shift-NIXSW. The ‘oxidic’ state is shown to be consistent with a mixture of epitaxial or substitutional sites and chemisorption into sites coordinated to three surface O atoms. The metallic V atoms also involve a mixture of chemisorption and second-layer sites above the substrate surface consistent with the formation of small V clusters. VOx films up to ∼6 atomic layers were also grown by post-oxidation (sequential V deposition and annealing in oxygen) and by reactive evaporation in a partial pressure of oxygen. While films of around one monolayer or less are consistent with epitaxial VO2 growth, the film quality deteriorates rapidly with increasing thickness and is worse for reactive evaporation. A possible interpretation of the NIXSW data is increasing contributions of V2O3 crystallites. The inferior quality of the reactively evaporated films may be due to an insufficient supply of oxygen. 相似文献
3.
4.
Oxidation of a NiAl(1 1 1) single crystal surface was investigated using high resolution soft X-ray photoelectron spectroscopy (HRSXPS), high resolution scanning electron microscopy (HRSEM), energy dispersive X-ray spectroscopy (EDS), X-ray mapping, and atomic force microscopy (AFM). After repeated oxygen exposure, annealing, and cleaning cycles under ultrahigh vacuum conditions, a new oxide phase in the form of tiny 3-dimensional surface structures was detected. These features are several micrometers long and ∼300 nm high and oriented along low index directions in the plane of the substrate; they have nickel aluminate spinel (NiAl2O4) stoichiometry. We propose that repeated cycles of oxygen dosing and annealing of the NiAl(1 1 1) surface leads to oxygen diffusion into the bulk and nucleation of spinel below the surface. 相似文献
5.
V2O5-TiO2 layers with a sheet-like morphology were synthesized by micro arc oxidation process for the first time. Surface morphology and topography of the layers were investigated by scanning electron microscope (SEM) and atomic force microscope (AFM). Phase structure and chemical composition of the layers were also studied by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) techniques. It was revealed that the composite layers had a sheet-like structure average thickness of which was about 100 nm depending on the applied voltage. The layers consisted of anatase, rutile, and vanadium pentoxide phases fractions of which varied with the applied voltage. The optical properties of the layers were also examined employing a UV-vis spectrophotometer. It was found that the absorption edge of the grown composite layers shifted toward the visible wavelengths when compared to MAO-synthesized pure titania layers. The band gap energy of the composite layers was calculated as 2.58 eV. Furthermore, photo-catalytic performance of the layers was examined by measuring the decomposition rate of methylene blue under ultraviolet and visible irradiations. The results demonstrated that about 90% and 68% of methylene blue solution was decomposed after 120 min ultraviolet and visible irradiations over the composite layers, respectively. 相似文献
6.
The effect of the irradiation with Al Kα X-rays during an XPS measurement upon the surface vanadium oxidation state of a fresh in vacuum cleaved V2O5(0 0 1) crystal was examined. Afterwards, the surface reduction of the V2O5(0 0 1) surface under Ar+ bombardment was studied. The degree of reduction of the vanadium oxide was determined by means of a combined analysis of the O1s and V2p photoelectron lines. Asymmetric line shapes were needed to fit the V3+2p photolines, due to the metallic character of V2O3 at ambient temperature. Under Ar+ bombardment, the V2O5(0 0 1) crystal surface reduces rather fast towards the V2O3 stoichiometry, after which a much slower reduction of the vanadium oxide occurs. 相似文献
7.
Weixin Huang 《Surface science》2006,600(4):793-802
The interaction of atomic hydrogen with thin epitaxial FeO(1 1 1) and Fe3O4(1 1 1) films was studied by TDS, XPS and LEED. On the thin, one Fe-O bilayer thick FeO film, partial reduction occurs in two steps during exposure. It ends after removal of 1/4 monolayer (ML) of oxygen with a 2 × 2 pattern appearing in LEED. This FeO0.75 film is passive against further reduction. The first reduction step saturates after removal of ∼0.2 ML and shows autocatalytic kinetics with the oxygen vacancies formed during reduction causing acceleration. The second step is also autocatalytic and is related with reduction to the final composition and an improvement of the 2 × 2 order. A structure model explaining the two-step reduction is proposed. On the thick Fe3O4 film, irregular desorption bursts of H2O and H2 were observed during exposure. Their occurrence appears to depend on the film quality and thus on surface order. Because of the healing of reduction-induced oxygen vacancies by exchange of oxygen or iron with the bulk, a change of the surface composition was not visible. The existence of partially reduced oxide phases resistant even to atomic hydrogen is relevant to the mechanism of dehydrogenation reactions using iron oxides as catalysts. 相似文献
8.
X-ray photoelectron spectroscopy was applied to study the hydroxylation of α-Al2O3 (0 0 0 1) surfaces and the stability of surface OH groups. The evolution of interfacial chemistry of the α-Al2O3 (0 0 0 1) surfaces and metal/α-Al2O3 (0 0 0 1) interfaces are well illustrated via modifications of the surface O1s spectra. Clean hydroxylated surfaces are obtained through water- and oxygen plasma treatment at room temperature. The surface OH groups of the hydroxylated surface are very sensitive to electron beam illumination, Ar+ sputtering, UHV heating, and adsorption of reactive metals. The transformation of a hydroxylated surface to an Al-terminated surface occurs by high temperature annealing or Al deposition. 相似文献
9.
Taketoshi Matsumoto Patricia Nickut Hironori Tsunoyama Tatsuya Tsukuda Yoshiyasu Matsumoto 《Surface science》2007,601(22):5121-5126
Deposition and fabrication of films of Au nanoclusters protected by alkanethiolate ligands are attempted on a TiO2(1 1 0) surface and the structures of films are observed by a scanning tunneling microscope (STM). Effects of oxygen and hydrogen-plasma etching in addition to UV irradiation on the structure and chemical composition of the films are also investigated by using STM and X-ray photoelectron spectroscopy. Alkanethiolate Au nanoclusters are produced using a modified Brust synthesis method and their LB films are dip-coated on TiO2(1 1 0). Alkanethiolate Au nanoclusters are weakly bound to the substrate and can be manipulated with an STM tip. Net-like structures of alkanethiolate Au nanoclusters are formed by a strong blast of air. Oxygen-plasma etching removes alkanethiolate ligands and simultaneously oxidizes Au clusters. At room temperature, prolonged oxygen-plasma etching causes agglomeration of Au nanoclusters. UV irradiation removes ligands partly, which makes Au nanoclusters less mobile. The net-like structure of alkanethiolate Au clusters produced by a blast of air is retained after oxygen and hydrogen-plasma etching. 相似文献
10.
The thermal chemistry of perfluoroethyl iodide (C2F5I) adsorbed on Cu(1 1 1) has been investigated by temperature-programmed reaction/desorption (TPR/D), reflection-absorption infrared spectroscopy (RAIRS), and X-ray photoelectron spectroscopy (XPS). I 4d and F 1s XPS spectra show that dissociative adsorption of C2F5I to form the surface-bound perfluroethyl (Cu-C2F5) moieties occurs at very low temperature (T < 90 K), while the C-F bond cleavage in adsorbed perfluroethyl (Cu-C2F5) begins at ca. 300 K. XPS and TPR/D studies further reveal that the reactions of βCF3αCF2(ad) on Cu(1 1 1) are strongly dependent on the surface coverage. At high coverages (?0.16 L exposure), the adsorbed perfluroethyl (Cu-C2F5) evolves, via α-F elimination, into the surface-bound tetrafluoroethylidene moieties (CuCF-CF3) followed by a dimerization step to form octafluoro-2-butene (CF3CFCFCF3) at 315 K as gas product. The surface-bound (Cu-C2F5) decomposes preferentially, at low coverages (?0.04 L), via consecutive α-F abstraction to afford intermediate, trifluoroethylidyne (CuCCF3), resulting in the final coupling reaction to yield hexafluoro-2-butyne (CF3CCCF3) at 425 K. However, at middle coverages (ca. 0.08-0.16 L exposure), the adsorbed perfluroethyl (Cu-C2F5) first experiences an α-F elimination and then prefers to loss the second F from β position to yield the intermediate of Cu-CF2-CFCu (μ-η,η-perfluorovinyl), which may further evolve into hexafluorocyclobutene (CF2CFCFCF2) at 350 K through cyclodimerization reaction. Our results have also shown that the surface reactions to yield the products, CF3CFCFCF3 and CF3CCCF3, obey first-order kinetics, whereas the formation of CF2CFCFCF2 follows second-order kinetics. 相似文献
11.
We present a study of the growth of silver nanoparticles or clusters on a TiO2(1 1 0) substrate in ultra-high vacuum. The growth is monitored in situ by ion and neutral scattering spectroscopy using He+ scattering and Auger spectroscopy. The scattering measurements show that only part of the surface is covered by Ag suggesting formation of clusters. Additionally an ex-situ study was performed by scanning electron microscopy and atomic force microscopy to determine the size distribution of these clusters. The average size distributions were found to range from about 5 to about 20 nm as a function of the evaporation flux. At the higher evaporation flux we observe formation of the smaller sized clusters. 相似文献
12.
The growth of thin subnanometric silicon films on TiO2 (1 1 0)-(1 × 2) reconstructed surfaces at room temperature (RT) has been studied in situ by X-ray and ultra-violet photoelectron spectroscopies (XPS and UPS), Auger electron and electron-energy-loss spectroscopies (AES and ELS), quantitative low energy electron diffraction (LEED-IV), and scanning tunneling microscopy (STM). For Si coverage up to one monolayer, a heterogeneous layer is formed. Its composition consists of a mixture of different suboxides SiOx (1 < x ? 2) on top of a further reduced TiO2 surface. Upon Si coverage, the characteristic (1 × 2) LEED pattern from the substrate is completely attenuated, indicating absence of long-range order. Annealing the SiOx overlayer results in the formation of suboxides with different stoichiometry. The LEED pattern recovers the characteristic TiO2 (1 1 0)-(1 × 2) diagram. LEED I-V curves from both, substrate and overlayer, indicate the formation of nanometric sized SiOx clusters. 相似文献
13.
Growth modes and electronic properties were analyzed for Au nano-particles grown on stoichiometric and reduced TiO2(1 1 0) substrates by medium energy ion scattering (MEIS) and photoelectron spectroscopy(PES) using synchrotron-radiation-light. Initially, two-dimensional islands (2D) with a height of one and two atomic layers grow and higher coverage increases the islands height to form three-dimensional (3D) islands for the stoichiometric TiO2(1 1 0) substrate. In contrast, 3D islands start to grow from initial stage with a small Au coverage (?0.1 ML, 1 ML = 1.39 × 1015 atoms/cm2: Au(1 1 1)) probably due to O-vacancies acting as a nucleation site. Above 0.7 ML, all the islands become 3D ones taking a shape of a partial sphere and the Au clusters change to metal for both substrates. We observed the Au 4f and Ti 3p core level shifts together with the valence band spectra. The Ti 3p peak for the O-deficient surface shifts to higher binding energy by 0.25 ± 0.05 eV compared to that for the stoichiometric surface, indicating downward band bending by an electron charge transfer from an O-vacancy induced surface state band to n-type TiO2 substrate. Higher binding energy shifts of Au 4f peaks observed for both substrates reveal an electron charge transfer from Au to TiO2 substrates. The work functions of Au nano-particles supported on the stoichiometric and reduced TiO2 substrates were also determined as a function of Au coverage and explained clearly by the above surface and interface dipoles. 相似文献
14.
V2O3(0 0 0 1) films have been grown epitaxially on Au(1 1 1) and W(1 1 0). Under typical UHV conditions these films are terminated by a layer of vanadyl groups as has been shown previously [A.-C. Dupuis, M. Abu Haija, B. Richter, H. Kuhlenbeck, H.-J. Freund, V2O3(0 0 0 1) on Au(1 1 1) and W(1 1 0): growth, termination and electronic structure, Surf. Sci. 539 (2003) 99]. Electron irradiation may remove the oxygen atoms of this layer. H2O adsorption on the vanadyl terminated surface and on the reduced surface has been studied with thermal desorption spectroscopy (TDS), vibrational spectroscopy (IRAS) and electron spectroscopy (XPS) using light from the BESSY II electron storage ring in Berlin. It is shown that water molecules interact only weakly with the vanadyl terminated surface: water is adsorbed molecularly and desorbs below room temperature. On the reduced surface water partially dissociates and forms a layer of hydroxyl groups which may be detected on the surface up to T ∼ 600 K. Below ∼330 K also co-adsorbed molecular water is detected. The water dissociation products desorb as molecular water which means that they recombine before desorption. No sign of surface re-oxidation could be detected after desorption, indicating that the dissociation products desorb completely. 相似文献
15.
The growth mode and electronic structure of Au nano-clusters grown on NiO and TiO2 were analyzed by reflection high-energy electron diffraction, a field-emission type scanning electron microscope, medium energy ion scattering and photoelectron spectroscopy. Au was deposited on clean NiO(0 0 1)-1 × 1 and TiO2(1 1 0)-1 × 1 surfaces at room temperature with a Knudsen cell at a rate of 0.25-0.35 ML/min (1 ML = 1.39 × 1015 atoms/cm2:Au(1 1 1)). Initially two-dimensional (2D) islands with thickness of one Au-atom layer grow epitaxially on NiO(0 0 1) and then neighboring 2D-islands link each other to form three-dimensional (3D)-islands with the c-axis oriented to the [1 1 1] direction. The critical size to form 3D-islands is estimated to be about 5 nm2. The shape of the 3D-islands is well approximated by a partial sphere with a diameter d and height h ranging from 2.0 to 11.8 nm and from 0.95 to 4.2 nm, respectively for Au coverage from 0.13 to 4.6 ML. The valence band spectra show that the Au/NiO and Au/TiO2 surfaces have metallic characters for Au coverage above 0.9 ML. We observed Au 4f spectra and found no binding energy shift for Au/NiO but significant higher binding energy shifts for Au/TiO2 due to an electron charge transfer from Au to TiO2. The work function of Au/NiO(0 0 1) gradually increases with increase in Au coverage from 4.4 eV (NiO(0 0 1)) to 5.36 eV (Au(1 1 1)). In contrast, a small Au deposition(0.15 to 1.5 ML) on TiO2(1 1 0) leads to reduction of the work function, which is correlated with an electron charge transfer from Au to TiO2 substrate. 相似文献
16.
Harald Gabasch Werner Unterberger Bernhard Klötzer Georg Kresse Michael Schmid 《Surface science》2006,600(1):205-218
Growth and decomposition of the Pd5O4 surface oxide on Pd(1 1 1) were studied at sample temperatures between 573 and 683 K and O2 gas pressures between 10−7 and 6 × 10−5 mbar, by means of an effusive O2 beam from a capillary array doser, scanning tunnelling microscopy (STM) and thermal desorption spectrometry (TDS). Exposures beyond the p(2 × 2)O adlayer (saturation coverage 0.25) at 683 K (near thermodynamic equilibrium with respect to Pd5O4 surface oxide formation) lead to incorporation of additional oxygen into the surface. To initiate the incorporation, a critical pressure beyond the thermodynamic stability limit of the surface oxide is required. This thermodynamic stability limit is near 8.9 × 10−6 mbar at 683 K, in good agreement with calculations by density functional theory. A controlled kinetic study was feasible by generating nuclei by only a short O2 pressure pulse and then following further growth kinetics in the lower (10−6 mbar) pressure range.Growth of the surface oxide layer at a lower temperature (573 K) studied by STM is characterized by a high degree of heterogeneity. Among various metastable local structures, a seam of disordered oxide formed at the step edges is a common structural feature characteristic of initial oxide growth. Further oxide nucleation appears to be favoured along the interface between the p(2 × 2)O structure and these disordered seams. Among the intermediate phases one specifically stable phase was detected both during growth and decomposition of the Pd5O4 layer. It is hexagonal with a distance of about 0.62 nm between the protrusions. Its well-ordered form is a superstructure.Isothermal decay of the Pd5O4 oxide layer at 693 K involves at first a rearrangement into the structure, indicating its high-temperature stability. This structure can break up into small clusters of uniform size and leaves a free metal surface area covered by a p(2 × 2)O adlayer. The rate of desorption increases autocatalytically with increasing phase boundary metal-oxide. We propose that at close-to-equilibrium conditions (693 K) surface oxide growth and decay occur via this intermediate structure. 相似文献
17.
Vanadium oxide thin films were prepared by sol-gel method, then subjected to Nd:YAG laser (CW, 1064 nm) radiation. The characteristics of the films were changed by varying the intensity of the laser radiation. The nanocrystalline films were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). XRD revealed that above 102 W/cm2 the original xerogel structure disappears and above 129 W/cm2 the films become totally polycrystalline with an orthorhombic structure. From TEM observations, we can see that due to laser radiation, the originally fibrillar-like particles disappear and irregular shaped, layer structured V2O5 particles are created. From XPS spectra we can conclude that due to laser radiation the O/V ratio increased with higher intensities. 相似文献
18.
The adsorption and surface reactions of propyl iodide on clean and potassium-modified Mo2C/Mo(1 0 0) surfaces have been investigated by thermal desorption spectroscopy (TPD), X-ray photoelectron spectroscopy (XPS) and high resolution electron energy loss spectroscopy (HREELS) in the 100-1200 K temperature range. This work is strongly related to the better understanding of the catalytic effect of Mo2C in the conversion of hydrocarbons. Potassium was found to be an effective promoter: it induced the rupture of C-I bond in the adsorbed C3H7I even at 100 K. The extent of C-I bond scission varied approximately linearly with the concentration of K coverage at the adsorption temperature of 100 K. As revealed by HREELS and TPD measurements the primary products of the dissociation are C3H7 and I. The former one was stabilized by potassium and underwent dehydrogenation and hydrogenation to give propene and propane. The desorption of both compounds is reaction-limited process. A fraction of propyl groups was converted into di-σ-bonded propene, which was stable up to ∼380 K. The coupling reaction of propyl species was also facilitated by potassium and resulted in the formation of hexane and hexene with Tp ∼ 230-250 K. Hydrogen was released with Tp = 390 K, indicative of a desorption limited process. The effect of potassium was explained by the extended electron donation to adsorbed propyl iodide in one hand, and by the direct interaction between potassium and I on the other hand. This was reflected by the shift of the desorption of potassium from the coadsorbed layer at and above 1.0 ML to higher temperature, and by the coincidal Tp values (∼700 K) of potassium and iodine. The formation of KI was also supported by the appearance of a loss feature at 650 cm−1 in the HREEL spectra attributed to a phonon mode of KI. 相似文献
19.
Growth of sexithiophene films on both ordered and disordered TiO2(1 1 0) surfaces has been investigated by angle-resolved ultraviolet photoemission spectroscopy, atomic force microscopy, and X-ray diffraction including grazing-incidence characterization. The order (or disorder) of the TiO2(1 1 0)-1 × 1 surface has been observed to profoundly influence the electronic, morphological, and structural properties of the 6T films: the band alignment, which determines the injection efficiency of contacts, has been considerably modified by 0.6 eV, and a morphology with either needle-like or dendritic-like islands has been obtained. The changes in the 6T film properties are associated with the orientational modifications of sexithiophene molecules within the films, either flat-lying or upright standing, 6T(0 1 0) or 6T(1 0 0) crystallites, respectively. The growth of different crystallite orientations is argued to be controlled by the kinetics mediated by the (dis)order of the TiO2(1 1 0) surface rather than exclusively by chemical interaction between the molecule and the substrate. 相似文献
20.
We have studied the influence of CO on the adsorption of benzene on the Co(0 0 0 1) surface using LEED, XPS, TDS and work function measurements. CO was found to reduce the benzene adsorption, but even at saturation CO exposure no complete blocking was observed. Thermal desorption of the coadsorbed layer featured CO and H2 peaks indicating partial dehydrogenation of benzene and retaining of the CO bond. Ordered LEED structures were found with all coverages: Pre-adsorption of CO led to patterns already seen for pure carbon monoxide adsorption. Pre-adsorption of benzene showed the known structure of pure benzene also with small CO exposures, but higher CO exposures yielded a mixture of and patterns. 相似文献