首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have employed a classical molecular dynamics simulation to investigate the energy transfer of a heavy projectile ion to a surface, i.e. Cs+ impacting onto Pt(1 1 1), for incidence energies between 25 and 100 eV and an incidence angle of 45°. The in-plane scattering results show a continuous increase of the final energy with increasing scattering angle. All scattering intensities have a main supraspecular peak and scattering into subspecular angles increases with increasing incidence energy. The large projectile/target mass ratio causes a high energy loss and a strong angular dependence of the final energy distribution. The trends of the energy transfer and its angular dependence can be understood in terms of a binary collision model, augmented with double collisions and an the image charge correction. Backscattering at high incidence energies leads to a distribution of very low final energies, indicating the onset of surface sputtering. Peaks in the energy spectra arise from impact site dependent scattering and can be assigned to single, double, triple or sputtering type collisions.  相似文献   

2.
T. Kravchuk 《Surface science》2006,600(6):1252-1259
In this study we investigate the influence of alloying on the reactivity and bonding of oxygen on α-Cu-Al(5 at.%)(1 0 0) oriented single crystal surfaces by X-ray photoelectron spectroscopy (XPS), ultra-violet spectroscopy (UPS) and low energy ion scattering (LEIS) spectroscopy, at room temperature. It was found that alloying results in an enhanced reactivity of both Cu and Al sites in comparison with the pure metals. According to adsorption curves calculated from XPS, saturation of the alloy surface occurs for exposures of ∼15 L. At saturation the total amount of adsorbed oxygen is similar for the alloy and pure copper surfaces. It was determined that first mostly Al sites are oxidized, followed by simultaneous oxidation of Cu and Al sites. At saturation the amount of oxygen bonded to Cu sites is ∼1.7 larger then that bonded to Al sites. From a comparison of the XPS and LEIS data analysis as a function of oxygen exposure it was found that oxidation of α-Cu-Al(5 at.%)(1 0 0) alloy is a multi-stage process with fast and slow stages. These stages involve an interplay of chemisorption, sub-surface diffusion of oxygen and Al segregation. UPS measurements show an increase in the work function of the alloy surface with oxygen adsorption. This is a contrast to pure Cu surfaces where the work function decreases at the initial stages of oxidation followed by an increase with oxygen exposure. Annealing to 400 °C drives the oxidized alloy surface into its thermodynamic state resulting in the formation of an aluminum oxide layer. Possible mechanisms to explain the enhanced reactivity of the alloy surface compared to that of pure copper are suggested and discussed.  相似文献   

3.
M. Walker  M. Draxler 《Surface science》2006,600(16):3327-3336
The initial growth of Pt on the Ni(1 1 0)-(3 × 1)-O and NiO(1 1 0) surfaces has been studied by coaxial impact collision ion scattering spectroscopy (CAICISS), low energy electron diffraction (LEED) and X-ray photoelectron spectroscopy (XPS). Prior to Pt deposition, the atomic structure of the near-surface regions of the Ni(1 1 0)-(3 × 1)-O and NiO(1 1 0) structures were studied using CAICISS, finding changes to the interlayer spacings due to the adsorption of oxygen. Deposition of Pt on the Ni(1 1 0)-(3 × 1)-O surface led to a random substitutional alloy in the near-surface region at Pt coverages both below and in excess of 1 ML. In contrast, when the surface was treated with 1800 L of atomic oxygen in order to form a NiO(1 1 0) surface, a thin Pt layer was formed upon room temperature Pt deposition. XPS and LEED data are presented throughout to support the CAICISS observations.  相似文献   

4.
The technique of angle resolved mapping of scattering and recoiling imaging spectra (SARIS) combined with computer simulations is demonstrated to be a valuable tool for characterization of atomic collision events on surfaces. The energy distributions of scattered Kr and fast recoiled Pt atoms from a Pt(1 1 1) surface were measured as a function of exit angle. The use of a large area microchannel plate detector and time-of-flight techniques decreases the collection time and increases the number of detected trajectories above that of other designs. Classical ion trajectory simulations using the three-dimensional scattering and recoiling imaging code are used to simulate the kinematics of the scattering and recoiling particles. It is shown that SARIS mapping allows one to probe the kinematics of both scattered and recoiled particles, the probability for their occurrence in specific trajectories, their detection probabilities, and their threshold detection velocity. The measured and simulated energy distributions agree quantitatively if the detection efficiency is taken into account. The observed value of the threshold detection velocity for Pt atoms, νth=3.78(5)×104 m/s, is in good agreement with previous studies.  相似文献   

5.
Low energy ion scattering spectroscopy (LEISS) has been used to characterize the evolution of ordered structures of S on the Pd(1 1 1) surface during annealing. During exposure of the Pd(1 1 1) surface to 0.7 L H2S at 300 K—conditions that produce the S(√3 × √3)R30 overlayer—the intensity of the Pd LEIS signal decreases and a feature assigned to adsorbed S appears as the adsorbed layer forms. When the surface is held at 300 K after exposure to H2S is stopped, the LEIS Pd intensity partially recovers and the S signal weakens, presumably as surface S atoms assume their equilibrium positions in the S(√3 × √3)R30 overlayer. Subsequent annealing of the S(√3 × √3)R30 structure at 700 K causes it to convert into a S(√7 × √7)R19 overlayer, whose LEIS spectrum is identical to that of clean Pd(1 1 1). The absence of LEIS evidence for S atoms at the exposed surface of the S(√7 × √7)R19 overlayer is at odds with published models of a mixed Pd-S top layer. Despite the similarity of the LEIS spectra of Pd(1 1 1) and Pd(1 1 1)-S(√7 × √7)R19, their activities for dissociative hydrogen adsorption are very different—the former readily adsorbs hydrogen at 100 K, while the latter does not—suggesting that S exerts its influence on surface chemistry from subsurface locations.  相似文献   

6.
Alkali metals (AM) on semiconductors have been investigated as a simple model system for the metal-semiconductor interfaces due to their simple electronic structures. Especially, cesium (Cs) on Si(0 0 1) surface has been studied with various experimental techniques. In this study, we investigated the atomic structure of initial Cs adsorption on Si(0 0 1)-(2×1) surface using coaxial impact collision ion scattering spectroscopy. When Cs atoms are adsorbed on Si(0 0 1)-(2×1) up to 0.2 ML at room temperature, the initial adsorption site is on-top T3 site with poor periodicity and the length of Si dimer is reserved as in the clean Si(0 0 1) surface. It is also found that Cs atoms adsorbed on Si(0 0 1) surface with a height of 2.83±0.05 Å from the second layer of Si(0 0 1) surface.  相似文献   

7.
An ordered (√19 × √19)R23.4°-Ge/Pt(1 1 1) surface alloy can be formed by vapor depositing one-monolayer Ge on a Pt(1 1 1) substrate at room temperature and subsequently annealing at 900-1200 K. The long-range order of this structure was observed by low energy electron diffraction (LEED) and confirmed by scanning tunneling microscopy (STM). The local structure and alloying of vapor-deposited Ge on Pt(1 1 1) at 300 K was investigated by using X-ray Photoelectron Diffraction (XPD) and low energy alkali ion scattering spectroscopy (ALISS). XPS indicates that Ge adatoms are incorporated to form an alloy surface layer at ∼900 K. Results from XPD and ALISS establish that Ge atoms are substitutionally incorporated into the Pt surface layer and reside exclusively in the topmost layer, with excess Ge diffusing deep into the bulk of the crystal. The incorporated Ge atoms at the surface are located very close to substitutional Pt atomic positions, without any corrugation or “buckling”. Temperature Programmed Desorption (TPD) shows that both CO and NO adsorb more weakly on the Ge/Pt(1 1 1) surface alloy compared to that on the clean Pt(1 1 1) surface.  相似文献   

8.
The adsorption structure and spin-resolved electronic structure of pentacene on Fe(1 0 0) surfaces were investigated using elastic recoil detection analysis (ERDA) and spin-polarized metastable deexcitation spectroscopy (SPMDS), respectively. It was found that the pentacene molecule adsorbs with its molecular plane parallel to the surface in the initial stage of growth, while the molecular plane tilted from the surface with the increase of the coverage. In the pentacene-Fe surface interaction, a donation and backdonation interaction was indicated. It was found that the polarity of the spin polarization induced in the pentacene molecular orbitals was opposite to each other between the orbitals contributing to the donation and those contributing to the backdonation.  相似文献   

9.
The effect of annealing temperature on the surface composition of α-Cu-Al(1 0 0) alloys for aluminum concentrations of 5, 12 and 17 at% was investigated using X-ray photoelectron spectroscopy (XPS) and low energy ion scattering (LEIS). Two initial states of the sample surfaces were examined: sputter-cleaned and oxidized. The effect of annealing temperature on segregation is different for sputter-cleaned and oxidized samples. Aluminum preferential sputtering and strong oxygen induced aluminum segregation were detected on all examined samples. Whilst for the sputter-cleaned surfaces a small thermal induced segregation was observed, the combination of annealing and oxygen exposure resulted in aluminum enrichment in the 100-300% range relative to the bulk concentration. The segregation rate is proportional to the aluminum concentration for sputter-cleaned surfaces and displays a maximum for the oxidized α-Cu-Al(12 at.%)(1 0 0) surface.  相似文献   

10.
X. Chen  J.A. Yarmoff 《Surface science》2007,601(11):2378-2383
The ion fractions of 5 keV Si+ ions singly scattered from iodine adatoms adsorbed on Al(1 0 0), Si(1 1 1) and pre-oxidized Si(1 1 1) were measured with time-of-flight spectroscopy. A considerable ion yield was observed, which did not change significantly with exit angle or I coverage. The mechanism of ion formation is assigned to valence electron resonant charge transfer (RCT) assisted by promotion of the Si ionization level. The yields are smaller than those of Si scattered from Cs adatoms, however, which suggests that electron tunneling from the occupied chemisorption states of the I adatom provides an additional neutralization channel.  相似文献   

11.
Jakub Drnec 《Surface science》2009,603(13):2005-2014
The adsorption of Cs on Pt(1 1 1) surfaces and its reactivity toward oxygen and iodine for coverages θCs?0.15 is reported. These surfaces show unusual “anomalous” behavior compared to higher coverage surfaces. Similar behavior of K on Pt(1 1 1) was previously suggested to involve incorporation of K into the Pt lattice. Despite the larger size of Cs, similar behavior is reported here. Anomalous adsorption is found for coverages lower than 0.15 ML, at which point there is a change in the slope of the work function. Thermal Desorption Spectroscopy (TDS) shows a high-temperature Cs peak at 1135 K, which involves desorption of Cs+ from the surface.The anomalous Cs surfaces and their coadsorption with oxygen and iodine are characterized by Auger Electron Spectroscopy (AES), TDS and Low Electron Energy Diffraction (LEED). Iodine adsorption to saturation on Pt(1 1 1)(anom)-Cs give rise to a sharp LEED pattern and a distinctive work function increase. Adsorbed iodine interacts strongly with the Cs and weakens the Cs-Pt bond, leading to desorption of CsxIy clusters at 560 K. Anomalous Cs increases the oxygen coverage over the coverage of 0.25 ML found on clean Pt. However, the Cs-Pt bond is not significantly affected by coadsorbed oxygen, and when oxygen is desorbed the anomalous cesium remains on the surface.  相似文献   

12.
We have studied the growth of cerium films on Rh(1 1 1) using STM (scanning tunneling microscopy), LEED (low energy electron diffraction), XPS (X-ray photoelectron spectroscopy) and AES (Auger electron spectroscopy). Measurements of the Ce films after room temperature deposition showed that Ce is initially forming nanoclusters in the low coverage regime. These clusters consist of 12 Ce atoms and have the shape of pinwheels. At a coverage of 0.25 ML (monolayer, ML) an adatom layer with a (2 × 2) superstructure is observed. Above 0.4 ML, Rh is diffusing through pinholes into the film, forming an unstructured mixed layer. Annealing at 250 °C leads to the formation of ordered Ce-Rh compounds based on the bulk compound CeRh3. At a coverage of 0.1 ML, small ordered (2 × 2) surface alloy domains are observed. The exchanged Rh atoms form additional alloy islands situated on the pure Rh(1 1 1) surface, showing the same (2 × 2) superstructure as the surface alloy. At a coverage of 0.25 ML, the surface is completely covered by the surface alloy and alloy islands. The (2 × 2) structure is equivalent to a (1 1 1)-plane of CeRh3, contracted by 6%. Annealing a 1 ML thick Ce layer leads to a flat surface consisting of different rotational domains of CeRh3(1 0 0). The Rh needed for alloy formation comes from 50 Å deep pits in the substrate. Finally we show that LEIS (low energy ion scattering) is not suitable for the characterization of Ce and CeRh films due to strong effects of neutralization.  相似文献   

13.
An experimental study of the ion yield dependence on the incident energy (0.4-2.2 keV) for Ne+ isotopes scattered at 120° from pure gallium and indium targets has been carried out by mass-resolved ion-scattering spectrometry. For both two targets, the ion yield curves exhibited a broad maximum below 0.8-1 keV (with a lower position for Ne+ on In) followed by a monotonous decrease yield without any oscillatory features. The energy dependence of ion-survival probability was explained as a complex interplay of the Auger neutralization with the characteristic velocity vc=(0.9±0.1)×107 cm/s for Ne+ on Ga, and the collision-induced neutralization and reionization. The later ones were significant processes at the energies larger than 0.8-1.0 keV or, in terms of the distance of closest approach, d?0.5-0.55 Å; the collision-induced neutralization was more effective than the inverse process. No visible influence of isotope effect on charge exchange was found. The ion-survival probability versus the inverse ion velocity displayed an independence on the mass of Ne+ projectiles.  相似文献   

14.
We investigate the broadening of the 2s energy level of a Li atom outside a Si(0 0 1) surface using a first principles approach. The covalent nature of the Si surface produces large variations in Li energy level widths as a function of lateral position across the surface. The widths above symmetric Si dimers are predicted to be much larger than above buckled Si dimers, suggesting that charge transfer will occur primarily above symmetric dimers. We discuss the ramifications of our results on the controversy surrounding the relative abundance of the buckled vs. symmetric dimers on the Si surface.  相似文献   

15.
Medium energy ion scattering (MEIS), using 100 keV H+ incident ions, has been used to investigate the structure of the Ag(1 1 1)(√7 × √7)R19° -CH3S surface phase. The results provide the first direct evidence that this structure does involve substantial reconstruction of the Ag surface layer. The measured absolute scattered ion yields and blocking curves are in generally good agreement with a specific structural model of the surface based on a reconstructed layer containing 3/7 ML Ag atoms, previously suggested on the basis of scanning tunnelling microscopy (STM) and normal incidence X-ray standing wave (NIXSW) studies. However, the MEIS data indicate that any rumpling of the thiolate layer, is small, and probably ?0.2 Å. This value is smaller than the amplitude suggested in the STM and NIXSW studies, but could be entirely consistent with the earlier experimental data.  相似文献   

16.
High-resolution electron energy loss spectroscopy was used to study the electronic properties of (3/2 × 3/2)-Na/Cu(1 1 1) at room temperature. Loss spectra showed two-well distinct losses at 114 and 180 meV assigned to not dispersive charge density waves. Mechanisms to explain their existence are proposed. Moreover, the expected 2D plasmon of the Na quantum well state was not observed. The strong influence of the underlying Cu substrate may be responsible for the absence of such mode.  相似文献   

17.
The adsorption of potassium on Fe(100) was studied by time-of-flight forward scattering and recoiling spectroscopy (TOF-SARS), low energy electron diffraction (LEED) and Auger electron spectroscopy (AES). After heating to 650 K of the potassium saturated surface the formation of a p(3 × 3) potassium superstructure was observed by LEED. TOF-SARS experiments ruled out the adsorption of potassium in the on-top, bridge and four-fold hollow site. The only site which is in agreement with all experimental results is the substitutional site where K replaces an Fe atom of the topmost layer of the crystal. This is the first time a substitutional adsorption site has been found on a bcc surface. On an fcc surface such an adsorption site has been found recently for adsorption of sodium and potassium on Al(111).  相似文献   

18.
Theoretical calculations using the coupled angular modes (CAM) method have been used to interpret experimental findings related to the scattered oxygen negative ion fraction (O) in collisions of low energy O+ with an Al(1 1 0) surface. The increasing O ion fraction observed experimentally at low O+ velocities can be explained in terms of the distance of closest approach Zc to the Al surface and the specific charge state of the projectile at this distance. Both Zc and the charge state influence the charge transfer process between the projectile and the surface at low collision energies.  相似文献   

19.
Grazing incidence ion impact on a flat terrace lets the projectile reflect specularly off the surface, leading to little or no damage production or sputtering. The presence of isolated surface defects may change this behaviour drastically. We investigate this phenomenon for the specific case of 5 keV Ar ions impinging at 83° towards the surface normal onto the Pt (1 1 1) surface. Molecular-dynamics simulations allow to study the influence of isolated adatoms in detail. The scattering of the projectile from the adatom can redirect the projectile, or let the adatom recoil, such that either of them deposits considerable energy in the target surface, leading to abundant damage production and sputtering. Two distinct collision zones are identified: (i) When the projectile hits the surface in front of the adatom, it may collide with the adatom indirectly (after being specularly reflected off the surface); (ii) alternatively, it may hit the adatom directly. We quantify our results by measuring the zone of influence (≅13 Å2) around the adatom, into which the projectile must hit in order to collide with the adatom, and by the sputter cross section of roughly . The data compare well with previous simulation results of sputtering from an atomically rough surface.  相似文献   

20.
To investigate the possibility of manipulating the surface chemical properties of finely dispersed metal films through ferroelectric polarization, the interaction of palladium with oppositely poled LiNbO3(0 0 0 1) substrates was characterized. Low energy ion scattering indicated that the Pd tended to form three-dimensional clusters on both positively and negatively poled substrates even at the lowest coverages. X-ray photoelectron spectroscopy (XPS) showed an upward shift in the binding energy of the Pd 3d core levels of 0.9 eV at the lowest Pd coverages, which slowly decayed toward the bulk value with increasing Pd coverage. These shifts were independent of the poling direction of the substrate and similar to those attributed to cluster size effects on inert supports. Thus, the spectroscopic data suggested that Pd does not interact strongly with LiNbO3 surfaces. The surface chemical properties of the Pd clusters were investigated using CO temperature programmed desorption. On both positively and negatively poled substrates, CO desorption from freshly deposited Pd showed a splitting of the broad 460 K desorption peak characteristic of bulk Pd into distinct peaks at 270 and 490 K as the Pd coverage was decreased below 1.0 ML; behavior that also resembles that seen on inert supports. It was found that a small fraction of the adsorbed CO may dissociate (<2%) for Pd on both positively and negatively poled substrates. The thermal response of the smaller Pd clusters on the LiNbO3 surfaces, however, was different from that of inert substrates. In a manner similar to Nb2O5, when CO desorption experiments were carried out a second time, the adsorption capacity decreased and the higher temperature desorption peak shifted from 490 K to below 450 K. This behavior was independent of the substrate poling direction. Thus, while there was evidence that LiNbO3 does not behave as a completely inert support, no significant differences between positively and negatively poled surfaces were observed. This lack of sensitivity of the surface properties of the Pd to the poling direction of the substrate is attributed to the three-dimensional Pd clusters being too thick for their surfaces to be influenced by the polarization of the underlying substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号