首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T. Kawamura  M. Suzuki 《Surface science》2007,601(22):5083-5087
By setting up two low temperature regions on a terrace of a vicinal Si(1 0 0)-2 × 1 surface, we have studied growth of nano-islands in the two regions using a kinetic Monte Carlo simulation. At first two islands are formed and grow independently without any supply of atoms from the outside. As the growth proceeds further, two islands are connected with each other by forming a bridge region. After the connection, the growth changes dramatically showing a competitive mode in one stage and a cooperative mode in the other. Two islands grow cooperatively in a sense that a larger island ceases to grow and waits until the size of the other smaller island becomes similar to that of the larger one. When two islands become similar in size, one of the islands grows faster than the other competitively, by accumulating atoms from then smaller one. The origin of the growth mode is analyzed.  相似文献   

2.
The vacuum deposition of Pb onto Ag(1 1 1) gives rise to two different surface structures depending on coverage and deposition temperature. At room temperature (RT), low energy electron diffraction (LEED) reveals a sharp reconstruction completed at 1/3 Pb monolayer (ML). Beyond, a close-packed Pb(1 1 1) incommensurate overlayer develops. At low temperature (LT, ∼100 K) the incommensurate structure is directly observed whatever the coverage, corresponding to the growth of close-packed two-dimensional Pb(1 1 1) islands. Synchrotron radiation Pb 5d core-level spectra clearly demonstrate that in each surface structure all Pb atoms have essentially a unique, but different, environment. This reflects the surface alloy formation between the two immiscible metals in the reconstruction and a clear signature of the de-alloying process at RT beyond 1/3 ML coverage.  相似文献   

3.
The initial growth and the stability of Fe layers on the Mo(1 1 1) surface was studied with Auger electron spectroscopy, low energy electron diffraction, scanning tunneling microscopy and thermal desorption spectroscopy. At room temperature at least the first two monolayers grow layer-by-layer. The first layer is stable up to about 1200 K. Excess Fe starts to agglomerate at about 400 K and forms with increasing temperature thick flat-top islands which start to sublime at a somewhat below 1200 K. A strong decrease of the adsorption energy with coverage was found in the first monolayer. No {2 1 1} or { 1 1 0} micro-faceting could be seen at any coverage upon annealing.  相似文献   

4.
Au island nucleation and growth on a Si(1 1 1) 7 × 7 vicinal surface was studied by means of scanning tunneling microscopy. The surface was prepared to have a regular array of step bunches. Growth temperature and Au coverage were varied in the 255-430 °C substrate temperature range and from 1 to 7 monolayers, respectively. Two kinds of islands are observed on the surface: Au-Si reconstructed islands on the terraces and three-dimensional (3D) islands along the step bunches. Focusing on the latter, the dependence of island density, size and position on substrate temperature and on Au coverage is investigated. At 340 °C and above, hemispherical 3D islands nucleate systematically on the step edges.  相似文献   

5.
We have studied the growth of cerium films on Rh(1 1 1) using STM (scanning tunneling microscopy), LEED (low energy electron diffraction), XPS (X-ray photoelectron spectroscopy) and AES (Auger electron spectroscopy). Measurements of the Ce films after room temperature deposition showed that Ce is initially forming nanoclusters in the low coverage regime. These clusters consist of 12 Ce atoms and have the shape of pinwheels. At a coverage of 0.25 ML (monolayer, ML) an adatom layer with a (2 × 2) superstructure is observed. Above 0.4 ML, Rh is diffusing through pinholes into the film, forming an unstructured mixed layer. Annealing at 250 °C leads to the formation of ordered Ce-Rh compounds based on the bulk compound CeRh3. At a coverage of 0.1 ML, small ordered (2 × 2) surface alloy domains are observed. The exchanged Rh atoms form additional alloy islands situated on the pure Rh(1 1 1) surface, showing the same (2 × 2) superstructure as the surface alloy. At a coverage of 0.25 ML, the surface is completely covered by the surface alloy and alloy islands. The (2 × 2) structure is equivalent to a (1 1 1)-plane of CeRh3, contracted by 6%. Annealing a 1 ML thick Ce layer leads to a flat surface consisting of different rotational domains of CeRh3(1 0 0). The Rh needed for alloy formation comes from 50 Å deep pits in the substrate. Finally we show that LEIS (low energy ion scattering) is not suitable for the characterization of Ce and CeRh films due to strong effects of neutralization.  相似文献   

6.
Room temperature (RT) adsorption of nitric oxide (NO) on Ir(1 1 1) was studied by scanning tunneling microscopy (STM). At low exposures, NO molecules can not be imaged by STM, because at RT the diffusion of NO is much faster than the STM scanning speed. At high exposures near the saturation coverage, however, a well-ordered 2 × 2 structure is observed. The coverage of the major 2 × 2 species is 0.25 and they can be assigned to the NO molecules adsorbed on the Ir ontop sites. A small number of less bright spots are assigned to nitrogen atoms produced by dissociation. Their number increases by annealing the NO-saturated surface at 380 K. A small number of another dissociation product, oxygen, are observed as black lines, indicating that the diffusion of oxygen atoms is fast. Scratch-like noise features were also detected by the STM, which suggests that a mobile precursor state exists, which was clearly shown by the effects of electron irradiation from the STM tip. These results are consistent with the previous molecular beam studies. Hopping of the 2 × 2 ordered NO species was frequently observed at the anti-phase domain boundaries and edges of the 2 × 2 islands.  相似文献   

7.
S.Yu. Bulavenko 《Surface science》2006,600(5):1185-1192
The STM technique with a special Bi/W tip was used to study the interaction of hydrogen atoms with the Si(1 1 1)-7 × 7 surface. The reactivity of different room temperature (RT) adsorption sites, such as adatoms (A), rest atoms (R), and corner holes (CH) was investigated. The reactivity of CH sites was found to be ∼2 times less than that of R and A sites. At temperatures higher than RT, hydrogen atoms rearrange among A, R, and CH sites, with increased occupation of R sites (T <  300 °C). Further temperature increase leads to hydrogen desorption, where its surface diffusion plays an active role. We discuss one of the possible desorption mechanisms, with the corner holes surrounded by a high potential barrier. Hydrogen atoms have a higher probability to overcome the desorption barrier rather than diffuse either into or out of the corner hole. The desorption temperature of hydrogen from CH, R, and A sites is about the same, equal to ∼500 °C. Also it is shown that hydrogen adsorption on the CH site causes slight electric charge redistribution over neighbouring adatoms, namely, increases the occupation of electronic states on A sites in the unfaulted halves of the Si(1 1 1)-7 × 7 unit cell. Based on these findings, the indirect method of investigation with conventional W tips was suggested for adsorbate interaction with CH sites.  相似文献   

8.
Growth and surface morphology of epitaxial Fe(1 1 0)/MgO(1 1 1)/Fe(1 1 0) trilayers constituting a magnetic tunnel junction were investigated by low-energy electron diffraction (LEED) and scanning tunneling microscopy (STM). STM reveals a grain-like growth mode of MgO on Fe(1 1 0) resulting in dense MgO(1 1 1) films at room temperature as well as at 250 °C. As observed by STM, initial deposition of MgO leads to a partial oxidation of the Fe(1 1 0) surface which is confirmed by Auger electron spectroscopy. The top Fe layer deposited on MgO(1 1 1) at room temperature is relatively rough consisting of clusters which can be transformed by annealing to an atomically flat epitaxial Fe(1 1 0) film.  相似文献   

9.
Electronic, magnetic and structural properties of atomic oxygen adsorbed in on-surface and subsurface sites at the two most densely packed iron surfaces are investigated using density functional theory combined with a thermodynamics formalism. Oxygen coverages varying from a quarter to two monolayers (MLs) are considered. At a 1/4 ML coverage, the most stable on-surface adsorption sites are the twofold long bridge sites on the (1 1 0), and the fourfold-hollow sites on the (1 0 0) surface. The presence of on-surface oxygen atoms enhances the magnetic moments of the atoms of the two topmost Fe layers. Detailed results on the surface magnetic properties, due to O incorporation, are presented as well. Subsurface adsorption is found unfavored. The most stable subsurface O, in tetrahedral positions at the (1 0 0) and octahedral ones at the (1 1 0) surface, are characterized by substantially lower binding than that in the on-surface sites. Subsurface oxygen increases the interplanar distance between the uppermost Fe layers. The preadsorbed oxygen overlayer enhances binding of subsurface O atoms, particularly for tetrahedral sites beneath the (1 1 0) surface.  相似文献   

10.
The dissociative adsorption of ethylene (C2H4) on Ni(1 1 1) was studied by scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. The STM studies reveal that ethylene decomposes exclusively at the step edges at room temperature. However, the step edge sites are poisoned by the reaction products and thus only a small brim of decomposed ethylene is formed. At 500 K decomposition on the (1 1 1) facets leads to a continuous growth of carbidic islands, which nucleate along the step edges.DFT calculations were performed for several intermediate steps in the decomposition of ethylene on both Ni(1 1 1) and the stepped Ni(2 1 1) surface. In general the Ni(2 1 1) surface is found to have a higher reactivity than the Ni(1 1 1) surface. Furthermore, the calculations show that the influence of step edge atoms is very different for the different reaction pathways. In particular the barrier for dissociation is lowered significantly more than the barrier for dehydrogenation, and this is of great importance for the bond-breaking selectivity of Ni surfaces.The influence of step edges was also probed by evaporating Ag onto the Ni(1 1 1) surface. STM shows that the room temperature evaporation leads to a step flow growth of Ag islands, and a subsequent annealing at 800 K causes the Ag atoms to completely wet the step edges of Ni(1 1 1). The blocking of the step edges is shown to prevent all decomposition of ethylene at room temperature, whereas the terrace site decomposition at 500 K is confirmed to be unaffected by the Ag atoms.Finally a high surface area NiAg alloy catalyst supported on MgAl2O4 was synthesized and tested in flow reactor measurements. The NiAg catalyst has a much lower activity for ethane hydrogenolysis than a similar Ni catalyst, which can be rationalized by the STM and DFT results.  相似文献   

11.
F. Wiame  V. Maurice  P. Marcus 《Surface science》2007,601(5):1193-1204
Several surface analysis techniques were combined to study the initial stages of oxidation of Cu(1 1 1) surfaces exposed to O2 at low pressure (<5 × 10−6 mbar) and room temperature. Scanning tunneling microscopy (STM) results show that the reactivity is governed by the restructuring of the Cu(1 1 1) surface. On the terraces, oxygen dissociative adsorption leads to the formation of isolated O adatoms and clusters weakly bound to the surface. The O adatoms are located in the fcc threefold hollow sites of the unrestructured terraces. Friedel oscillations with an amplitude lower than 5 pm have been measured around the adatoms. At step edges, surface restructuring is initiated and leads to the nucleation and growth of a two-dimensional disordered layer of oxide precursor. The electronic structure of this oxide layer is characterised by a band gap measured by scanning tunneling spectroscopy to be ∼1.5 eV wide. The growth of the oxide islands progresses by consumption of the upper metal terraces to form triangular indents. The extraction of the Cu atoms at this interface generates a preferential orientation of the interface along the close-packed directions of the metal. A second growth front corresponds to the step edges of the oxide islands and progresses above the lower metal terraces. This is where the excess Cu atoms extracted at the first growth front are incorporated. STM shows that the growing disordered oxide layer consists of units of hexagonal structure with a first nearest neighbour distance characteristic of a relaxed Cu-Cu distance (∼0.3 nm), consistent with local Cu2O(1 1 1)-like elements. Exposure at 300 °C is necessary to form an ordered two-dimensional layer of oxide precursor. It forms the so-called “29” superstructure assigned to a periodic distorted Cu2O(1 1 1)-like structure.  相似文献   

12.
The atomic interaction and magnetic properties of ultrathin Fe films grown on cleaved and polished MgO(1 0 0) surfaces were studied by conversion electron Mössbauer spectroscopy (CEMS). 57Fe layers were deposited as probe atoms in different layer positions in 10 ML thick Fe films. Fe layers of different thicknesses were formed on polished and cleaved substrate surfaces at RT deposition. The analysis of the spectra showed no Fe-O2- interaction in MgO/Fe interface. FeO phase formation was excluded. The Mössbauer spectrum of 5 ML 57Fe sample showed enhanced internal magnetic field at 80 K. No interdiffusion of 57Fe and 56Fe atoms was observed between the layers at room temperature.  相似文献   

13.
I.V. Shvets  V. Kalinin 《Surface science》2007,601(15):3169-3178
The deposition of ultrathin Fe films on the Mo(1 1 0) surface at elevated temperatures results in the formation of distinctive nanowedge islands. The model of island formation presented in this work is based on both experiment and DFT calculations of Fe adatom hopping barriers. Also, a number of classical molecular dynamics simulations were carried out to illustrate fragments of the model. The islands are formed during a transition from a nanostripe morphology at around 2 ML coverage through a Bales-Zangwill type instability. Islands nucleate when the meandering step fronts are sufficiently roughened to produce a substantial overlap between adjacent steps. The islands propagate along the substrate [0 0 1] direction due to anisotropic diffusion/capture processes along the island edges. It was found that the substrate steps limit adatom diffusion and provide heterogeneous nucleation sites, resulting in a higher density of islands on a vicinal surface. As the islands can be several layers thick at their thinnest end, we propose that adatoms entering the islands undertake a so-called “vertical climb” along the sides of the island. This is facilitated by the presence of mismatch-induced dislocations that thread to the sides of the islands and produce local maxima of compressive strain. Dislocation lines also trigger initial nucleation on the surface with 2-3 ML Fe coverage. The sides of the nanowedge islands typically form along low-index crystallographic directions but can also form along dislocation lines or the substrate miscut direction.  相似文献   

14.
Ming-Shu Chen 《Surface science》2007,601(22):5162-5169
The adsorption of K atoms on Cu(0 0 1) has been studied by low-energy electron diffraction (LEED) at room temperature (RT) and 130 K. At RT, a (3 × 2)-p2mg LEED pattern with single-domain was observed at coverage of 0.33, whereas the orthogonal two-domain was found at 130 K. At 130 K, a c(4 × 2) pattern with orthogonal two-domain was observed at coverage 0.25. Both the (3 × 2)-p2mg and c(4 × 2) structures have been determined by a tensor LEED analysis. It is demonstrated that K atoms are adsorbed on surface fourfold hollow sites in the c(4 × 2), while in the (3 × 2) structure two K atoms in the unit cell are located at an asymmetric site with a glide-reflection-symmetry. The asymmetric site is at near the midpoint between the exact hollow site and bridge-site but slightly close to the hollow site. A rumpling of 0.07 Å in the first Cu layer was confirmed, which might stabilize K atoms at the asymmetric site. Surface structures appearing in a coverage range 0.25-0.33 are discussed in terms of the occupation of the asymmetric site with increase of coverage.  相似文献   

15.
The growth of Pb films on the Si(1 0 0)-2 × 1 surface has been investigated at low temperature using scanning tunneling microscopy. Although the orientation of the substrate is (1 0 0), flat-top Pb islands with (1 1 1) surface can be observed. The island thickness is confined within four to nine atomic layers at low coverage. Among these islands, those with a thickness of six layers are most abundant. Quantum-well states in Pb(1 1 1) islands of different thickness are acquired by scanning tunneling spectroscopy. They are found to be identical to those taken on the Pb(1 1 1) islands grown on the Si(1 1 1)7 × 7 surface. Besides Pb(1 1 1) islands, two additional types of Pb islands are formed: rectangular flat-top Pb(1 0 0) islands and rectangular three-dimensional (3D) Pb islands, and both their orientations rotate by 90° from a terrace to the adjacent one. This phenomenon implies that the structures of Pb(1 0 0) and 3D islands are influenced by the Si(1 0 0)-2 × 1 substrate.  相似文献   

16.
The structure, energetics and magnetic properties of the quasihexagonal reconstruction of the Ir(1 0 0) surface and nanostructures formed by Fe atoms on this surface have been investigated using first-principles density functional theory with generalized gradient corrections. We find the reconstructed (1 × 5) surface to be 0.10 eV/(1 × 1) area lower in energy than the unreconstructed surface and we demonstrate that first-principles calculations can achieve quantitative agreement with experiment even for such long-period and deep-going reconstructions. For Fe coverage of 0.4 monolayers (ML) we have studied the stripe-like structure with biatomic Fe rows placed in the troughs of the (1 × 5)-reconstructed surface. Results of nonmagnetic calculations agree well with the structure inferred from STM data. Higher Fe coverages lead to a de-reconstruction of the Ir substrate. At 0.8 ML coverage a surface compound with composition Fe4Ir is formed, which shows an appreciable buckling. In this case, a ferromagnetic calculation leads to good agreement with the low-temperature LEED data. We predict that the (1 × 5) periodicity of the mixed interface layer will persist also in thicker films with a pure Fe surface. Films with 1-4 ML Fe are predicted to be tetragonally distorted and ferromagnetic, with an axial ratio corresponding well to an elastic distortion of the Fe lattice.  相似文献   

17.
The initial stages of iron silicide growth on the Si(1 0 0)2 × 1 surface during solid-phase synthesis were investigated by photoelectron spectroscopy using synchrotron radiation. The experiments were made on iron films of 1-50 monolayer (ML) thickness in the temperature range from room temperature to 750 °С. Our results support the existence of three stages in the Fe deposition on Si(1 0 0) at room temperature, which include formation of the Fe-Si solid solution, Fe3Si silicide and an iron film. The critical Fe dose necessary for the solid solution to be transformed to the silicide is found to be 5 ML. The solid-phase reaction was found to depend on the deposited metal dose. At 5 ML, the reaction begins at 60 °С, and the solid-phase synthesis leads to the formation of only metastable silicides (FeSi with the CsCl-type structure, γ-FeSi2 and α-FeSi2). A specific feature of this process is Si segregation on the silicide films. At a thickness of 15 ML and more, we observed only stable phases, namely, Fe3Si, ε-FeSi and β-FeSi2.  相似文献   

18.
The self-assembly process of Ge islands on patterned Si (0 0 1) substrates is investigated using scanning tunneling microscopy. The substrate patterns consist of one-dimensional stripes with “V”-shaped geometry and sidewalls inclined by an angle of 9° to the (0 0 1) surface. Onto these stripes, Ge is deposited in a step-wise manner at different temperatures from 520 °C to 650 °C. At low temperature, the Ge first grows nearly conformally over the patterned surface but at about 3 monolayers a strong surface roughening due to reconstruction of the surface ridges as well as side wall ripple formation occurs. At 600 °C, a similar roughening takes place, but Ge accumulates within the grooves such that at a critical thickness of 4.5 monolayers, 3D islands are formed at the bottom of the grooves. This accumulation process is enhanced at 650 °C growth, so that the island formation starts about 1 monolayers earlier. At 600 and 650 °C, all islands are all aligned at the bottom of the stripes, whereas at 550 °C Ge island form preferentially on top of ridges. The experimental observations are explained by the strong temperature dependence of Ge diffusion over the patterned surface.  相似文献   

19.
R. Negishi 《Surface science》2006,600(5):1125-1128
The Au silicide islands have been fabricated by additional deposition of Au on the prepared surface at 270 °C where the Si islands of magic sizes were formed on the Si(1 1 1)-(7 × 7) dimer-adatom-stacking fault substrate. The surface structure on the Au silicide islands shows the Au/Si(1 1 1)-√3 × √3 reconstructed structure although the substrate remains 7 × 7 DAS structure. The size of the Au silicide islands depends on the size distribution of the preformed Si islands, because the initial size and shape of the Si islands play important roles in the formation of the Au silicide island. We have achieved the fabrication of the Au silicide islands of about the same size (∼5 nm) and the same shape by controlling the initial Si growth and the additional Au growth conditions.  相似文献   

20.
T. Bernhard 《Surface science》2006,600(9):1877-1883
The structure and magnetism of thin epitaxial Fe layers grown on Cu(0 0 1) is investigated by grazing scattering of fast H and He atoms. Information on the atomic structure of the film and substrate surfaces is obtained by making use of ion beam triangulation with protons. The magnetic behavior is studied via the polarization of light emitted after capture of spin-polarized electrons into excited atomic terms during scattering of He atoms. For the formation of bcc(1 1 0)-like Fe films at higher coverages, we detect differences in structural and magnetic properties for room and low temperature growth. We suggest that the crystalline structure depends on the film morphology and that Cu impurities affect the magnetic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号