首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An experimental study of the ion yield dependence on the incident energy (0.4-2.2 keV) for Ne+ isotopes scattered at 120° from pure gallium and indium targets has been carried out by mass-resolved ion-scattering spectrometry. For both two targets, the ion yield curves exhibited a broad maximum below 0.8-1 keV (with a lower position for Ne+ on In) followed by a monotonous decrease yield without any oscillatory features. The energy dependence of ion-survival probability was explained as a complex interplay of the Auger neutralization with the characteristic velocity vc=(0.9±0.1)×107 cm/s for Ne+ on Ga, and the collision-induced neutralization and reionization. The later ones were significant processes at the energies larger than 0.8-1.0 keV or, in terms of the distance of closest approach, d?0.5-0.55 Å; the collision-induced neutralization was more effective than the inverse process. No visible influence of isotope effect on charge exchange was found. The ion-survival probability versus the inverse ion velocity displayed an independence on the mass of Ne+ projectiles.  相似文献   

2.
We investigate the neutralization of low energy He+ ions in close collisions with metal surface atoms. In order to describe the neutralization process as completely as possible, we consider Auger neutralization (AN), resonant neutralization (RN) and resonant ionization (RI). Our calculation agrees well with experimental data and shows that in some metals (like Pd) AN is the dominant process, whereas in others (like Al) RN and RI contribute significantly for energies above the threshold for reionization.  相似文献   

3.
X. Chen  J.A. Yarmoff 《Surface science》2007,601(11):2378-2383
The ion fractions of 5 keV Si+ ions singly scattered from iodine adatoms adsorbed on Al(1 0 0), Si(1 1 1) and pre-oxidized Si(1 1 1) were measured with time-of-flight spectroscopy. A considerable ion yield was observed, which did not change significantly with exit angle or I coverage. The mechanism of ion formation is assigned to valence electron resonant charge transfer (RCT) assisted by promotion of the Si ionization level. The yields are smaller than those of Si scattered from Cs adatoms, however, which suggests that electron tunneling from the occupied chemisorption states of the I adatom provides an additional neutralization channel.  相似文献   

4.
We have studied the energy exchange between hyperthermal (5-100 eV) Cs+ projectiles and a Pt(1 1 1) surface by measuring the kinetic energy of the scattered ions. The scattering geometry was chosen to be in-plane with specular scattering angles, and the energy of the scattered ions was analyzed as functions of incidence energy and angle. For low incidence energy (<40 eV), the energy transfer to the Pt surface is substantially enhanced due to the attractive image charge force between Cs+ and the surface. The image charge effects are highlighted by the different energy transfer on Pt(1 1 1) and Si(1 1 1) surfaces. Analysis of the experimental results using two- and three-dimensional theoretical models revealed a well depth of 1 eV for the image charge potential. Hyperthermal Cs+ ions scatter from Pt(1 1 1) predominantly via double collisions with Pt atoms, though the scattering phenomena are insensitive to the impact site at the surface.  相似文献   

5.
G.F. Liu 《Surface science》2006,600(11):2293-2298
The fraction of low energy Na+ ions neutralized during single scattering from CeO2(1 0 0) surfaces was measured with time-of-flight spectroscopy. The projectile ionization level is resonant with the surface electronic states, so that the neutralization results from a non-adiabatic charge exchange process that depends on the exit velocity and the local electrostatic potential (LEP) along the exit trajectory at a point close to the surface. Variations of the measured neutral fraction with ion energy and exit angle differ from the results obtained from clean metals due to the inhomogeneity of the LEP on an oxide surface. The results suggest that neutral fraction data collected as a function of emission angle and ion energy could be used to quantitatively map the shape of an inhomogeneous LEP.  相似文献   

6.
T. Kravchuk 《Surface science》2006,600(6):1252-1259
In this study we investigate the influence of alloying on the reactivity and bonding of oxygen on α-Cu-Al(5 at.%)(1 0 0) oriented single crystal surfaces by X-ray photoelectron spectroscopy (XPS), ultra-violet spectroscopy (UPS) and low energy ion scattering (LEIS) spectroscopy, at room temperature. It was found that alloying results in an enhanced reactivity of both Cu and Al sites in comparison with the pure metals. According to adsorption curves calculated from XPS, saturation of the alloy surface occurs for exposures of ∼15 L. At saturation the total amount of adsorbed oxygen is similar for the alloy and pure copper surfaces. It was determined that first mostly Al sites are oxidized, followed by simultaneous oxidation of Cu and Al sites. At saturation the amount of oxygen bonded to Cu sites is ∼1.7 larger then that bonded to Al sites. From a comparison of the XPS and LEIS data analysis as a function of oxygen exposure it was found that oxidation of α-Cu-Al(5 at.%)(1 0 0) alloy is a multi-stage process with fast and slow stages. These stages involve an interplay of chemisorption, sub-surface diffusion of oxygen and Al segregation. UPS measurements show an increase in the work function of the alloy surface with oxygen adsorption. This is a contrast to pure Cu surfaces where the work function decreases at the initial stages of oxidation followed by an increase with oxygen exposure. Annealing to 400 °C drives the oxidized alloy surface into its thermodynamic state resulting in the formation of an aluminum oxide layer. Possible mechanisms to explain the enhanced reactivity of the alloy surface compared to that of pure copper are suggested and discussed.  相似文献   

7.
Surface adsorbates induce strong local perturbations in the electronic structure and potentials in their surroundings. Consequently, charge transfer processes between projectiles and adsorbate-covered surfaces are strongly affected. The theoretical calculations and experiment measurements reported herein are focused on the H/Na/Cu(1 1 1) system. The electron dynamics at the Na/Cu(1 1 1) surface and the influence of Na adsorbates on the H-Cu(1 1 1) charge transfer are treated and discussed in detail. The ion fractions are mainly influenced by the ion exit trajectories. At low Na coverage, they exhibit a maximum near the 60° exit angle from surface. The calculations and experimental data are in good agreement.  相似文献   

8.
The effect of annealing temperature on the surface composition of α-Cu-Al(1 0 0) alloys for aluminum concentrations of 5, 12 and 17 at% was investigated using X-ray photoelectron spectroscopy (XPS) and low energy ion scattering (LEIS). Two initial states of the sample surfaces were examined: sputter-cleaned and oxidized. The effect of annealing temperature on segregation is different for sputter-cleaned and oxidized samples. Aluminum preferential sputtering and strong oxygen induced aluminum segregation were detected on all examined samples. Whilst for the sputter-cleaned surfaces a small thermal induced segregation was observed, the combination of annealing and oxygen exposure resulted in aluminum enrichment in the 100-300% range relative to the bulk concentration. The segregation rate is proportional to the aluminum concentration for sputter-cleaned surfaces and displays a maximum for the oxidized α-Cu-Al(12 at.%)(1 0 0) surface.  相似文献   

9.
The technique of angle resolved mapping of scattering and recoiling imaging spectra (SARIS) combined with computer simulations is demonstrated to be a valuable tool for characterization of atomic collision events on surfaces. The energy distributions of scattered Kr and fast recoiled Pt atoms from a Pt(1 1 1) surface were measured as a function of exit angle. The use of a large area microchannel plate detector and time-of-flight techniques decreases the collection time and increases the number of detected trajectories above that of other designs. Classical ion trajectory simulations using the three-dimensional scattering and recoiling imaging code are used to simulate the kinematics of the scattering and recoiling particles. It is shown that SARIS mapping allows one to probe the kinematics of both scattered and recoiled particles, the probability for their occurrence in specific trajectories, their detection probabilities, and their threshold detection velocity. The measured and simulated energy distributions agree quantitatively if the detection efficiency is taken into account. The observed value of the threshold detection velocity for Pt atoms, νth=3.78(5)×104 m/s, is in good agreement with previous studies.  相似文献   

10.
M. Walker  M. Draxler 《Surface science》2006,600(16):3327-3336
The initial growth of Pt on the Ni(1 1 0)-(3 × 1)-O and NiO(1 1 0) surfaces has been studied by coaxial impact collision ion scattering spectroscopy (CAICISS), low energy electron diffraction (LEED) and X-ray photoelectron spectroscopy (XPS). Prior to Pt deposition, the atomic structure of the near-surface regions of the Ni(1 1 0)-(3 × 1)-O and NiO(1 1 0) structures were studied using CAICISS, finding changes to the interlayer spacings due to the adsorption of oxygen. Deposition of Pt on the Ni(1 1 0)-(3 × 1)-O surface led to a random substitutional alloy in the near-surface region at Pt coverages both below and in excess of 1 ML. In contrast, when the surface was treated with 1800 L of atomic oxygen in order to form a NiO(1 1 0) surface, a thin Pt layer was formed upon room temperature Pt deposition. XPS and LEED data are presented throughout to support the CAICISS observations.  相似文献   

11.
Ye Yang 《Surface science》2004,573(3):335-345
Time-of-flight spectra were collected for low energy 7Li+ and 23Na+ ions backscattered from Si(1 1 1) surfaces covered with sub-monolayers of iodine. Li ions singly scattered from the iodine adatoms have consistently larger neutralization probabilities than those scattered from the silicon substrate, and the neutralization decreases with off-normal emission. This indicates that the internal charge distribution of the iodine adatoms is not uniform, presumably due to attraction of electron density to the positively charged bonding Si atom. Photoelectron spectroscopy shows that iodine adsorbed on pre-oxidized Si bonds through the oxygen atom, forming hypoiodite (-OI) moieties. The neutralization of 23Na+ backscattered from such iodine adatoms is independent of the emission angle, indicating that there is less charge rearrangement than for iodine bonded directly to Si.  相似文献   

12.
The processes of electron transfer and dissociative scattering are explored for collisions of hyperthermal NO+ on GaAs(110). The experiments reveal a marked angular dependence to O emergence. A strong correlation between the O scattering angle and the final atom-surface interaction site provides a map of the lateral dependence to reactivity. The results are modeled by sequential neutralization, dissociation, and electron attachment steps. Classical trajectory calculations, in conjunction with an empirical opacity function, accurately reproduce the experimental results. The opacity function is interpreted as the probability that an electron will attach to a departing O fragment as a function of the last surface site the atom impacts. The experiments indicate that O emergence occurs predominantly for oxygen atoms which come in close contact with the localized dangling bond states of GaAs(110).  相似文献   

13.
N. Lorente  R. Monreal 《Surface science》1997,370(2-3):324-338
The neutralization of He+ scattered off aluminum is calculated via a self-consistent LDA where the metal surface is modeled by an LDA jellium surface, and its structure factor is consistently calculated. This approach includes Auger and plasmon-assisted neutralization channels of He+ to the He ground state in front of aluminum. We analyze these neutralization channels, which leads us to a revision of the usual calculations of ion neutralization on surfaces depending on the transferred energy lying below, near, or above the metal plasma frequency. The results of this calculation are compared with those of other methods, namely usual unscreened calculations, calculations which extrapolate bulk results, calculations performed for a step potential surface, and surface calculations in the long-distance limit.  相似文献   

14.
The adsorption structure and spin-resolved electronic structure of pentacene on Fe(1 0 0) surfaces were investigated using elastic recoil detection analysis (ERDA) and spin-polarized metastable deexcitation spectroscopy (SPMDS), respectively. It was found that the pentacene molecule adsorbs with its molecular plane parallel to the surface in the initial stage of growth, while the molecular plane tilted from the surface with the increase of the coverage. In the pentacene-Fe surface interaction, a donation and backdonation interaction was indicated. It was found that the polarity of the spin polarization induced in the pentacene molecular orbitals was opposite to each other between the orbitals contributing to the donation and those contributing to the backdonation.  相似文献   

15.
Experimental evidence for surface segregation of Pt at (1 1 1) surfaces of ternary (Pt, Ni)3Al alloys is presented, based upon Auger electron spectroscopy, low energy ion scattering, and angle-resolved X-ray photoelectron spectroscopy. Density functional calculations in the dilute limit confirm that Pt segregation is energetically favored.  相似文献   

16.
We have employed a classical molecular dynamics simulation to investigate the energy transfer of a heavy projectile ion to a surface, i.e. Cs+ impacting onto Pt(1 1 1), for incidence energies between 25 and 100 eV and an incidence angle of 45°. The in-plane scattering results show a continuous increase of the final energy with increasing scattering angle. All scattering intensities have a main supraspecular peak and scattering into subspecular angles increases with increasing incidence energy. The large projectile/target mass ratio causes a high energy loss and a strong angular dependence of the final energy distribution. The trends of the energy transfer and its angular dependence can be understood in terms of a binary collision model, augmented with double collisions and an the image charge correction. Backscattering at high incidence energies leads to a distribution of very low final energies, indicating the onset of surface sputtering. Peaks in the energy spectra arise from impact site dependent scattering and can be assigned to single, double, triple or sputtering type collisions.  相似文献   

17.
Low energy ion scattering spectroscopy (LEISS) has been used to characterize the evolution of ordered structures of S on the Pd(1 1 1) surface during annealing. During exposure of the Pd(1 1 1) surface to 0.7 L H2S at 300 K—conditions that produce the S(√3 × √3)R30 overlayer—the intensity of the Pd LEIS signal decreases and a feature assigned to adsorbed S appears as the adsorbed layer forms. When the surface is held at 300 K after exposure to H2S is stopped, the LEIS Pd intensity partially recovers and the S signal weakens, presumably as surface S atoms assume their equilibrium positions in the S(√3 × √3)R30 overlayer. Subsequent annealing of the S(√3 × √3)R30 structure at 700 K causes it to convert into a S(√7 × √7)R19 overlayer, whose LEIS spectrum is identical to that of clean Pd(1 1 1). The absence of LEIS evidence for S atoms at the exposed surface of the S(√7 × √7)R19 overlayer is at odds with published models of a mixed Pd-S top layer. Despite the similarity of the LEIS spectra of Pd(1 1 1) and Pd(1 1 1)-S(√7 × √7)R19, their activities for dissociative hydrogen adsorption are very different—the former readily adsorbs hydrogen at 100 K, while the latter does not—suggesting that S exerts its influence on surface chemistry from subsurface locations.  相似文献   

18.
The self diffusion of Mn and Pd in a single grain icosahedral Al69.9Pd20.5Mn9.6 quasicrystal has been determined by low energy ion scattering (LEIS). The diffusion was determined by depositing different elements (Pd, Mn) on the surface and measuring the rate of change in surface composition as a function of temperature by LEIS. The surface composition was monitored over the temperature range of 355-575 K for Mn and 440-745 K for Pd and compared to model calculations to allow the activation energy for diffusion to be determined. Activation energies of 0.20 ± 0.01 eV for Mn and 0.64 ± 0.03 eV for Pd have then been measured for self diffusion in i-Al-Pd-Mn, respectively. No deviation from Arrhenius behavior was detected in the temperature range covered by the present experiments. From the low values of activation energy we propose that this range of diffusion is phason related, reflecting the specific nature of the icosahedral structure.  相似文献   

19.
The adsorption of potassium on Fe(100) was studied by time-of-flight forward scattering and recoiling spectroscopy (TOF-SARS), low energy electron diffraction (LEED) and Auger electron spectroscopy (AES). After heating to 650 K of the potassium saturated surface the formation of a p(3 × 3) potassium superstructure was observed by LEED. TOF-SARS experiments ruled out the adsorption of potassium in the on-top, bridge and four-fold hollow site. The only site which is in agreement with all experimental results is the substitutional site where K replaces an Fe atom of the topmost layer of the crystal. This is the first time a substitutional adsorption site has been found on a bcc surface. On an fcc surface such an adsorption site has been found recently for adsorption of sodium and potassium on Al(111).  相似文献   

20.
An approach is described to promote epitaxial growth of thin metal films on single-crystal metal substrates by stabilizing the interface with an extremely thin metallic interlayer. A single atomic layer of a metal is deposited at the interface, Ti on Al(1 0 0) in this case, prior to the growth of the metal film of interest to produce an epitaxial interface in a system that is otherwise characterized by interdiffusion and disorder. The stabilized interface reduces interdiffusion and serves as a template for ordered film growth. Using Rutherford backscattering and channeling techniques along with low-energy electron diffraction and low-energy He+ scattering, it is demonstrated that an atomically thin layer of Ti metal deposited at the Fe-Al interface, a system well known for considerable intermixing at room temperature, reduces interdiffusion and promotes the epitaxial growth of Fe films on the Al(1 0 0) surface. The decrease in ion scattering yield for Al atoms, Fe-Fe shadowing and long-range order of the surface suggest that the epitaxial growth of Fe is greatly improved when the Ti interlayer is introduced prior to Fe deposition. Off-normal ion channeling experiments provide clear evidence for the bcc structure of Fe on the Ti/Al(1 0 0) template with the measured average (1 0 0) interplanar distance of 1.44 Å in the Fe overlayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号