首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yunsheng Ma 《Surface science》2009,603(7):1046-1391
The formation, stability and CO adsorption properties of PdAg/Pd(1 1 1) surface alloys were investigated by X-ray photoelectron spectroscopy (XPS) and by adsorption of CO probe molecules, which was characterized by temperature-programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS). The PdAg/Pd(1 1 1) surface alloys were prepared by annealing (partly) Ag film covered Pd(1 1 1) surfaces, where the Ag films were deposited at room temperature. Surface alloy formation leads to a modification of the electronic properties, evidenced by core-level shifts (CLSs) of both the Pd(3d) and Ag(3d) signal, with the extent of the CLSs depending on both initial Ag coverage and annealing temperature. The role of Ag pre-coverage and annealing temperature on surface alloy formation is elucidated. For a monolayer Ag covered Pd(1 1 1) surface, surface alloy formation starts at ∼450 K, and the resulting surface alloy is stable upon annealing at temperatures between 600 and 800 K. CO TPD and HREELS measurements demonstrate that at 120 K CO is exclusively adsorbed on Pd surface atoms/Pd sites of the bimetallic surfaces, and that the CO adsorption behavior is dominated by geometric ensemble effects, with adsorption on threefold hollow Pd3 sites being more stable than on Pd2 bridge sites and finally Pd1 a-top sites.  相似文献   

2.
E. Jeroro  A. Datye  J.M. Vohs 《Surface science》2007,601(23):5546-5554
The adsorption and bonding configuration of CO on clean and Zn-covered Pd(1 1 1) surfaces was studied using low energy electron diffraction (LEED), temperature programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS). LEED and TPD results indicate that annealing at 550 K is sufficient to induce reaction between adsorbed Zn atoms and the Pd(1 1 1) surface resulting in the formation of an ordered surface PdZn alloy. Carbon monoxide was found to bond more weakly to the Zn/Pd(1 1 1) alloy surfaces compared to clean Pd(1 1 1). Zn addition was also found to alter the preferred adsorption sites for CO from threefold hollow to atop sites. Similar behavior was observed for supported Pd-Zn/Al2O3 catalysts. The results of this study show that both ensemble and electronic effects play a role in how Zn alters the interactions of CO with the surface.  相似文献   

3.
Structures of carbon monoxide layers on the oxygen-modified Mo(1 1 0) and Mo(1 1 2) surfaces have been investigated by means of density-functional (DFT) calculations. It is found that CO molecules adsorb at hollow sites on the O/Mo(1 1 0) surface and nearly atop Mo atoms on the O/Mo(1 1 2) surface. The favorable positions for adsorption are shown to be near protrusions of electron density above the Mo surface atoms. The presence of oxygen on the molybdenum surface significantly reduces the binding energy of the CO molecule with the substrate; on the oxygen-saturated Mo(1 1 0) surface, the adsorption of CO is completely blocked. The calculated local densities of states (LDOS) demonstrate that the O 2s peak for O adsorbed on Mo(1 1 0) surface is at −19 eV (with respect to the Fermi level), while for the oxygen atom of an adsorbed CO molecule the related 3σ molecular orbital gives rise to a peak at −23 eV. This difference stems from the bonding of the O atom either with Mo surface for adsorbed O or with C atom in adsorbed CO, and therefore the position of the O 2s peak in photoemission spectra can serve as a convincing argument in favor of either the presence or absence of the CO dissociation on Mo surfaces.  相似文献   

4.
One monolayer of Ag deposited on Cu(1 1 1) shows two kinds of characteristic reconstruction, depending on the conditions of the preparation: the incommensurate moiré structure appears for one monolayer prepared at 200 K whereas a monolayer deposited at room temperature (or higher) exhibits a quasi-commensurate triangular structure. By high-resolution ARUPS measurements on the triangular structure we find an opening of a gap in the Shockley state band, which is a signature of the super-lattice. On the other hand, no gap opening is observed on the moiré structure. In addition, we show that the Shockley state plays an important role in the adsorption process of rare gas atoms on these surfaces. ARUPS experiments on adsorbed Xe on 0.6 ML Ag/Cu(1 1 1) show clearly that the Xe atoms favor the adsorption on the Ag islands, before the Cu terraces will be covered at higher Xe exposure.  相似文献   

5.
We use density functional theory (DFT) with the generalized gradient approximation (GGA) and the revised Perdew-Burke-Ernzerhoff (rPBE) functional, to study the surface composition of the (1 1 1) and (1 0 0) dilute Pd/Au alloy. We find that the energy of Pd atoms is lower when they substitute an Au atom in the bulk than when they substitute an Au atom in the surface layer, or when they are adsorbed on the surface. Whether they are in the surface layer or in the bulk, the Pd atoms interact very weakly with each other. CO adsorbs on the Pd atom in the surface layer and the energy of this complex is lower than that of CO in gas and Pd atom in the bulk. The interaction between the PdCO complexes formed when CO adsorbs on a Pd atom imbedded in the surface layer, is also negligible. We use these energies, equilibrium thermodynamics, and a simple lattice-gas model to examine the equilibrium composition of the surface layer, as a function of temperature, CO pressure and the Pd/Au ratio. We find that the surface Pd concentration for a nanoparticle of an Au/Pd alloy differs from that in a bulk sample. The difference is due mainly to the fact that in a nanoparticle the migration of Pd atoms to the surface depletes the bulk concentration while in a large sample; the bulk provides an infinite source of Pd atoms to populate the surface sites. This system is of interest because Pd/Au alloys are selective catalysts for vinyl acetate synthesis when the Pd concentration on the surface is very low.  相似文献   

6.
The surface stress on clean TiO2 (1 1 0) and (1 0 0) surfaces, and those with four types of adsorbent - (i) molecularly adsorbed water, (ii) dissociatively adsorbed water, (iii) dissociatively adsorbed water at an oxygen vacancy, and (iv) adsorbed hydrogen - was investigated in the framework of density functional theory using a slab model. The calculations were intended to rationalize the effect of the artificially introduced stress that occurs in experimentally photoinduced hydrophilicity. Tensile stress was observed for a clean (1 1 0) surface, and a mixture of tensile and compressive stress for a clean (1 0 0) surface. The adsorbate-induced surface stresses were analyzed in terms of the sixfold coordinated character of the surface titanium atoms, hydrogen bonds between the adsorbents and the bridging oxygen atoms, and the change in electron density in the vicinity of the surface.  相似文献   

7.
The structures of the lowest total energy for small AgN clusters with N = 2-20, which are grown on Ag(1 1 1) and Ni(1 1 1) surfaces, have been determined using a combination of the embedded-atom method and the basin-hopping algorithm. It is found that the particularly stable Ag clusters with N<18 have similar geometries on both surfaces when comparing clusters of the same size. On the other hand, the geometries of the less stable Ag clusters in the same size range differ for the two surfaces. From N?18, the sizes of the particularly stable structures are different for the two different substrates. Due to the large size mismatch of the two types of atoms it is energetically unfavorable for Ag to form a pseudomorphic monolayer structures on Ni(1 1 1) and there is considerable strain produced at the interface. The effect of this strain and the increased adatom-substrate interactions lead to irregular and elongated structures of the adsorbed Ag clusters.  相似文献   

8.
Adsorption of methanol on clean Pd(1 1 0) and on an alloyed Ag/Pd(1 1 0) surface has been studied by high-resolution photoelectron spectroscopy. On Pd(1 1 0) two different chemisorbed methanol species were observed for temperatures up to 200 K, with the one at lower binding energy remaining at low coverage. These species were attributed to methanol adsorbed in two different adsorption sites on the Pd(1 1 0) surface. As is well established for this system, heating to 250 K resulted in decomposition of methanol into CO. The adsorption and decomposition behaviour of methanol on the Ag/Pd(1 1 0) surface alloy formed by depositing Ag on Pd(1 1 0) at elevated temperature was similar to that of the pure Pd(1 1 0) surface. This suggests that the amount of Ag present in the Pd(1 1 0) surface in this study does not affect the decomposition behaviour of methanol as compared to pure Pd(1 1 0). Complementary density functional theory calculations also show little influence of Ag on the binding of methanol to Pd. These calculations predict an on-top adsorption site for low methanol coverages.  相似文献   

9.
10.
Yilin Cao 《Surface science》2006,600(19):4572-4583
To provide information about the chemistry of water on Pd surfaces, we performed density functional slab model studies on water adsorption and decomposition at Pd(1 1 1) surface. We located transition states of a series of elementary steps and calculated activation energies and rate constants with and without quantum tunneling effect included. Water was found to weakly bind to the Pd surface. Co-adsorbed species OH and O that are derivable from H2O stabilize the adsorbed water molecules via formation of hydrogen bonds. On the clean surface, the favorable sites are top and bridge for H2O and OH, respectively. Calculated kinetic parameters indicate that dehydrogenation of water is unlikely on the clean regular Pd(1 1 1) surface. The barrier for the hydrogen abstraction of H2O at the OH covered surface is approximately 0.2-0.3 eV higher than the value at the clean surface. Similar trend is computed for the hydroxyl group dissociation at H2O or O covered surfaces. In contrast, the O-H bond breaking of water on oxygen covered Pd surfaces, H2Oad + Oad → 2OHad, is predicted to be likely with a barrier of ∼0.3 eV. The reverse reaction, 2OHad → H2Oad + Oad, is also found to be very feasible with a barrier of ∼0.1 eV. These results show that on oxygen-covered surfaces production of hydroxyl species is highly likely, supporting previous experimental findings.  相似文献   

11.
The formic acid and methanol oxidation reaction are studied on Pt(1 1 1) modified by a pseudomorphic Pd monolayer (denoted hereafter as the Pt(1 1 1)-Pd1 ML system) in 0.1 M HClO4 solution. The results are compared to the bare Pt(1 1 1) surface. The nature of adsorbed intermediates (COad) and the electrocatalytic properties (the onset of CO2 formation) were studied by FTIR spectroscopy. The results show that Pd has a unique catalytic activity for HCOOH oxidation, with Pd surface atoms being about four times more active than Pt surface atoms at 0.4 V. FTIR spectra reveal that on Pt atoms adsorbed CO is produced from dehydration of HCOOH, whereas no CO adsorbed on Pd can be detected although a high production rate of CO2 is observed at low potentials. This indicates that the reaction can proceed on Pd at low potentials without the typical “poison” formation. In contrast to its high activity for formic acid oxidation, the Pd film is completely inactive for methanol oxidation. The FTIR spectra show that neither adsorbed CO is formed on the Pd sites nor significant amounts of CO2 are produced during the electrooxidation of methanol.  相似文献   

12.
Strain-induced nanopatterns formed by the coadsorption of nitrogen and oxygen atoms are studied on the Cu(0 0 1) surface by scanning tunneling microscopy. A square grid pattern similar to that on the N-adsorbed surface appears, and consists of square c(2 × 2) areas with adsorbed N and O atoms when the total density of the adsorbates is around 30% of the Cu atom density on the clean surface. We evaluated the surface strain using a first-principles calculation for a coadsorbed surface and compared it with those on the clean and N-adsorbed surfaces. The strain on the coadsorbed surface is smaller than that of the N-adsorbed surface. The observed size of the square c(2 × 2) area on the coadsorbed surface is larger than that on the N-adsorbed surface with increasing the density of the adsorbates on average as expected by the strain reduction. On the other hand, there is no significant difference in the period of the grid pattern.  相似文献   

13.
We studied the low temperature (T ? 130 K) growth of Ag on Si(0 0 1) and Si(1 1 1) flat surfaces prepared by Si homo epitaxy with the aim to achieve thin metallic films. The band structure and morphology of the Ag overlayers have been investigated by means of XPS, UPS, LEED, STM and STS. Surprisingly a (√3 × √3)R30° LEED structure for Ag films has been observed after deposition of 2-6 ML Ag onto a Si(1 1 1)(√3 × √3)R30°Ag surface at low temperatures. XPS investigations showed that these films are solid, and UPS measurements indicate that they are metallic. However, after closer STM studies we found that these films consists of sharp Ag islands and (√3 × √3)R30°Ag flat terraces in between. On Si(0 0 1) the low-temperature deposition yields an epitaxial growth of Ag on clean Si(0 0 1)-2 × 1 with a twinned Ag(1 1 1) structure at coverage’s as low as 10 ML. Furthermore the conductivity of few monolayer Ag films on Si(1 0 0) surfaces has been studied as a function of temperature (40-300 K).  相似文献   

14.
Electronic, magnetic and structural properties of atomic oxygen adsorbed in on-surface and subsurface sites at the two most densely packed iron surfaces are investigated using density functional theory combined with a thermodynamics formalism. Oxygen coverages varying from a quarter to two monolayers (MLs) are considered. At a 1/4 ML coverage, the most stable on-surface adsorption sites are the twofold long bridge sites on the (1 1 0), and the fourfold-hollow sites on the (1 0 0) surface. The presence of on-surface oxygen atoms enhances the magnetic moments of the atoms of the two topmost Fe layers. Detailed results on the surface magnetic properties, due to O incorporation, are presented as well. Subsurface adsorption is found unfavored. The most stable subsurface O, in tetrahedral positions at the (1 0 0) and octahedral ones at the (1 1 0) surface, are characterized by substantially lower binding than that in the on-surface sites. Subsurface oxygen increases the interplanar distance between the uppermost Fe layers. The preadsorbed oxygen overlayer enhances binding of subsurface O atoms, particularly for tetrahedral sites beneath the (1 1 0) surface.  相似文献   

15.
Pd-Cu bimetallic surfaces formed through a vacuum-deposition of Pd on Cu(1 1 1) have been discussed on the basis of carbon monoxide (CO) adsorption: CO is used as a surface probe and infrared reflection absorption (IRRAS) spectra are recorded for the CO-adsorbed surfaces. Low energy electron diffraction (LEED) patterns for the bimetallic surfaces reveal six-fold symmetry even after the deposition of 0.6 nm. The lattice spacings estimated by the separations of reflection high-energy electron diffraction (RHEED) streaks increase with increasing Pd thickness. Room-temperature CO exposures to the bimetallic surfaces formed by the Pd depositions less than 0.3 nm thickness generate the IRRAS bands due to the three-fold-hollow-, bridge- and linear-bonded CO to Pd atoms. In particular, on the 0.1 nm-thick Pd surface, the linear-bonded CO band becomes apparent at an earlier stage of the exposure. In contrast, the bridge-bonded CO band dominates the IRRAS spectra for CO adsorption on the 0.6 nm-thick Pd surface, at which the lattice spacing corresponds to that of Pd(1 1 1). A 90 K-CO exposure to the 0.1 nm-thick Pd surface leads to the IRRAS bands caused not only by CO-Pd but also by CO-Cu, while the Cu-related band is almost absent from the spectra for the 0.3 nm-thick Pd surface. The results clearly reveal that local atomic structures of the outermost bimetallic surface can be discussed by the IRRAS spectra for the probe molecule.  相似文献   

16.
We have studied the adsorption of Pb on the Rh(1 0 0) and (1 1 0) surfaces by photoemission and low energy electron diffraction (LEED), and tested the chemical properties by adsorption of CO. Pb forms two distinct c(2 × 2) phases on Rh(1 0 0), according to the temperature of the substrate. The phase formed below about 570-620 K, denoted α-c(2 × 2), reduces the coverage of adsorbed CO but does not affect the valence band spectrum of the molecule. The phase formed above this temperature, denoted β-c(2 × 2), also reduces the coverage of adsorbed CO but the valence band spectrum of the adsorbed CO is strongly affected. The two phases are also characterised by a slightly different binding energy of the Pb 5d5/2 level, 17.54 eV for the α phase and 17.70 for the β phase. The Pb/Rh(1 1 0) surface shows two ordered Pb induced phases, c(2 × 2) and p(3 × 1). CO adsorbs on the first with reduced heat of adsorption and with a valence band spectrum that is strongly altered with respect to CO adsorbed on clean Rh(1 1 0), but does not adsorb on the p(3 × 1) structure at 300 K. We compare the present results with previous results from related systems.  相似文献   

17.
In this paper, the properties and dissolution trends of the surfaces doped with different metal atoms on the Al(1 0 0) surface were investigated by the density functional theory calculations. A surface impurity model was proposed by replacing the topmost surface layer Al atoms by Me (Me = Zn, Ga, In, Sn and Pb) atoms with the coverage of 1/9, 1/4, 1/2, and 3/4 monolayer, respectively. Results show that the surface energy of Me-Al(1 0 0) surfaces depends primarily on the nature of the impurity atom species and the monolayer coverage. The work function of Me-Al surfaces is smaller than that of pure Al(1 0 0) surface, and decreases almost linearly with the amount of Me. It is found that the Me-Al alloys are more easily dissolvable than the pure Al, due to the fact that the electrochemical dissolution potential shifts were negative for all Me-Al(1 0 0) surfaces with respect to the clean pure Al(1 0 0) surface.  相似文献   

18.
Using infrared reflection absorption spectroscopy (IRRAS) and temperature programmed desorption (TPD), we investigated carbon monoxide (CO) adsorption and desorption behaviors on atomic checkerboard structures of Cu and Pd formed by Pd vacuum deposition at various temperatures of Cu(1 0 0). The 0.15-nm-thick Pd deposition onto a clean Cu(1 0 0) surface at room temperature (RT) showed a clear c(2 × 2) low-energy electron diffraction (LEED) pattern, i.e. Cu(1 0 0)-c(2 × 2)-Pd. The RT-CO exposure to the c(2 × 2) surfaces resulted in IRRAS absorption caused by CO adsorbed on the on-top sites of Pd. The LEED patterns of the Pd-deposited Cu(1 0 0) at higher substrate temperatures revealed less-contrasted c(2 × 2) patterns. The IRRAS intensities of the linearly bonded CO bands on 373-K-, 473-K-, and 673-K-deposited c(2 × 2) surfaces are, respectively, 25%, 22%, and 10% less intense than those on the RT-deposited surface, indicating that Pd coverages at the outermost c(2 × 2) surfaces decrease with increasing deposition temperature. In the initial stage of the 90-K-CO exposure to the RT surface, the band attributable to CO bonded to the Pd emerged at 2067 cm−1 and shifted to higher frequencies with increasing CO exposure. At saturation coverage, the band was located at 2093 cm−1. In contrast, two distinct bands around 2090 cm−1 were apparent on the spectrum of the 473-K-deposited surface: the CO saturation spectrum was dominated by an apparent single absorption at 2090 cm−1 for the 673-K-deposited surface. The TPD spectra of the surfaces showed peaks at around 200 and 300 K, which were ascribable respectively to Cu-CO and Pd-CO. Taking into account the TPD and IRRAS results, we discuss the adsorption-desorption behaviors of CO on the ordered checkerboard structures.  相似文献   

19.
The adsorption of CO on Au(3 1 0) and Au(3 2 1) was studied using a combination of thermal desorption spectroscopy and high resolution core level photoemission spectroscopy. These vicinal Au surfaces both have 6-fold coordinated atoms at the step edges but have a different terrace structure. The CO adsorption behavior was found to be very similar for both surfaces. Three different desorption peaks due to chemisorbed CO were identified, which desorb around 100 K(α), 120 K(β) and 180 K(γ), respectively. The C1s and O1s spectra of the chemisorbed CO show a complex shake-up structure. Our experimental results indicate that CO only adsorbs on the step atoms. The different desorption peaks are explained by substrate-mediated long-range interactions between the adsorbates. Comparison with literature results shows that the CO adsorption energy is not only dependent on the coordination number of the Au atoms, but that the exact geometrical structure of the surface also plays a role.  相似文献   

20.
Infrared reflection absorption spectroscopy (IRRAS) was used to investigate carbon monoxide (CO) adsorption on 0.15 nm-thick-0.6 nm-thick Pd-deposited Pt(1 1 1) bimetallic surfaces: Pdx/Pt(1 1 1) (where x is the Pd thickness in nanometers) fabricated using molecular beam epitaxial method at substrate temperatures of 343 K, 473 K, and 673 K. Reflection high-energy electron diffraction (RHEED) measurements for Pd0.15-0.6 nm/Pt(1 1 1) surfaces fabricated at 343 K showed that Pd grows epitaxially on a clean Pt(1 1 1), having an almost identical lattice constant of Pt(1 1 1). The 1.0 L CO exposure to the clean Pt(1 1 1) at room temperature yielded linearly bonded and bridge-bonded CO-Pt bands at 2093 and 1855 cm−1. The CO-Pt band intensities for the CO-exposed Pdx/Pt(1 1 1) surfaces decreased with increasing Pd thickness. For Pd0.3 nm/Pt(1 1 1) deposited at 343 K, the 1933 cm−1 band caused by bridge-bonded CO-Pd enhanced the spectral intensity. The linear-bonded CO-Pt band (2090 cm−1) almost disappeared and the bridge-bonded CO-Pd band dominated the spectra for Pd0.6 nm/Pt(1 1 1). With increasing substrate temperature during the Pd depositions, the relative band intensities of the CO-Pt/CO-Pd increased. For the Pd0.3 nm/Pt(1 1 1) deposited at 673 K, the linear-bonded CO-Pt and bridge-bonded CO-Pd bands are located respectively at 2071 and 1928 cm−1. The temperature-programmed desorption (TPD) spectrum for the 673 K-deposited Pd0.3 nm/Pt(1 1 1) showed that a desorption signal for the adsorbed CO on the Pt sites decreased in intensity and shifted ca. 20 K to a lower temperature than those for the clean Pt(1 1 1). We discuss the CO adsorption behavior on well-defined Pd-deposited Pt(1 1 1) bimetallic surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号