首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T. Ohwaki  Y. Taga 《Surface science》1985,157(1):L308-L314
The yield and energy distribution of positive secondary ions emitted from Si under N2+ ion bombardment were measured. The obtained mass peaks correspond to three types of secondary ion species, that is, physically sputtered ions (Si+, Si2+), chemically sputtered ions (SiN+ Si2N+) and doubly charged ions (Si2+). The dependence of secondary ion emission on the primary ion energy was studied in a range of 2.0–20.0 keV. The yields of physically and chemically sputtered ions were almost independent of the primary ion energy. The yield of the doubly charged ion strongly depended on the primary ion energy. The energy distribution of secondary ions of the three types showed the same dependence on the primary ion energy. The most probable energy of the distribution increased with the primary ion energy. On the other hand, for the energy distribution curves of sputtered ions, the tail factors N in E?N were constant and showed a m/e dependence.  相似文献   

2.
The usefulness of the usage of cluster primary ion source together with an Ag substrate and detection of Ag cationized molecular ions was studied from the standpoint to realize high sensitivity TOF-SIMS analysis of organic materials. Although secondary ions from polymer thin films on a Si substrate can be detected in a higher sensitivity with Au3+ cluster primary ion compared with Ga+ ion bombardment, it was clearly observed that the secondary ion intensities from samples on an Ag substrate showed quite a different tendency from that on Si. When monoatomic primary ions, e.g., Au+ and Ga+, were used for the measurement of the sample on an Ag substrate, [M+Ag]+ ions (M corresponds to polyethylene glycol molecule) were detected in a high sensitivity. On the contrary, when Au3+ was used, no intensity enhancement of [M+Ag]+ ions was observed. The acceleration energy dependence of the detected secondary ions implies the different ionization mechanisms on the different substrates.  相似文献   

3.
In addition to structural information, a detailed knowledge of the local chemical environment proves to be of ever greater importance, for example for the development of new types of materials as well as for specific modifications of surfaces and interfaces in multiple fields of materials science or various biomedical and chemical applications. But the ongoing miniaturization and therefore reduction of the amount of material available for analysis constitute a challenge to the detection limits of analytical methods. In the case of time-of-flight secondary ion mass spectrometry (TOF-SIMS), several methods of secondary ion yield enhancement have been proposed. This paper focuses on the investigation of the effects of two of these methods, metal-assisted SIMS and polyatomic primary ion bombardment. For this purpose, thicker layers of polystyrene (PS), both pristine and metallized with different amounts of gold, were analyzed using monoatomic (Ar+, Ga+, Xe+, Bi+) and polyatomic (SF5+, Bi3+, C60+) primary ions. It was found that polyatomic ions generally induce a significant increase of the secondary ion yield. On the other hand, with gold deposition, a yield enhancement can only be detected for monoatomic ion bombardment.  相似文献   

4.
In order to investigate the secondary cluster ion emission process of organo-metallic compounds under keV ion bombardment, self-assembled monolayers (SAMs) of alkanethiols on gold are ideal model systems. In this experimental study, we focussed on the influence of the primary ion species on the emission processes of gold-alkanethiolate cluster ions from a hexadecanethiol SAM on gold. For this purpose, we carried out time-of-flight secondary ion mass spectrometry (TOF-SIMS) measurements using the following primary ion species and acceleration voltages: Ar+, Xe+, SF5+ (10 kV), Bi+, Bi3+(25 kV), Bi32+, Bi52+, Bi72+ (25 kV).It is well known that molecular ions M and gold-alkanethiolate cluster ions AuxMy with M = S-(CH2)15-CH3, x − 3 ≤ y ≤ x + 1, x, y > 0, show intense peaks in negative mass spectra. We derived yields YSI exemplarily for the molecular ions M and the gold-hexadecanethiolate cluster ions Auy+1My up to y = 8 and found an exponentially decreasing behaviour for increasing y-values for the cluster ions.In contrast to the well-known increase in secondary ion yield for molecular secondary ions when moving from lighter to heavier (e.g. Ar+ to Xe+) or from monoatomic to polyatomic (e.g. Xe+ to SF5+) primary ions, we find a distinctly different behaviour for the secondary cluster ions. For polyatomic primary ions, there is a decrease in secondary ion yield for the gold-hexadecanethiolate clusters whereas the relative decrease of the secondary ion yield ξY with increasing y remains almost constant for all investigated primary ions.  相似文献   

5.
A novel quantification approach is applied to determine in situ the amount of surface oxygen within the sputtered particle escape depth during steady-state sputter depth profiling of silicon under simultaneous oxygenation with an oxygen flood gas or with an oxygen primary ion beam. Quantification is achieved by comparing the secondary ion intensities of 16O that is adsorbed or implanted at the Si surface with the measured peak intensities of a calibrated 18O ion implant used as a reference standard. Sputtered ion yields can thereby be related to surface oxygen levels. In the present work the dependences of the partial silicon sputter yield Y and of the positive and negative secondary ion useful yields UY(X±) (X = B, O, Al, Si, P) on the oxygen/silicon ratio, O/Si, in the sputtered flux are studied for 40Ar+ bombardment of Si with simultaneous O2 flooding. The silicon sputter yield is found to decrease with increasing flood pressure and O/Si ratio by up to a factor of 3. Both positive and negative secondary ion yields are enhanced by the presence of oxygen at the silicon surface. The useful ion yield of Si+ scales non-linearly with the atom fraction of surface oxygen; this behavior is shown to invalidate models that suggest that Si+ ion yield enhancement is dominated either by isolated oxygen atoms or by formation of SiO2 precipitates. In contrast a microscopic statistical model that assumes that local Si+ ion formation depends only on the number of oxygen atoms coordinated to the Si atom to be ejected fits the ion yield data quantitatively.  相似文献   

6.
Aun+ and C60+ primary ion sources have been used to acquire spectra from phospholipids, symmetric liposomes and asymmetric liposomes. We demonstrate that when using different ion beams different chemical information can be obtained. Symmetric and asymmetric liposomes, with 95% asymmetry, were produced and analysed with Au+, Au3+ and C60+ primary ion beams. C60+ gave the greatest yield from the symmetric liposome but after correcting for the yield effects on the data obtained from the asymmetric liposome it has been shown that C60+ is the most surface sensitive, providing the least information from the inner leaflet of the liposome. Aun+ provides the greatest amount of information from the inner leaflet. The results present the possibility of designing ToF-SIMS experiments that selectively probe specific regions of a (bio)molecular surface.  相似文献   

7.
The cations emission from condensed matter surfaces has been investigated on the basis of localization and delocalization of valence hole(s) in the femtosecond timescale. The yield of scattered H+ (E0=100 eV), though negligibly small from the Pt(1 1 1) substrate, increases markedly when Ar is adsorbed on it, indicating the localization of a valence (H+ 1s) hole on the physisorbed Ar layer. However, the yield of H+ scattered from a thick H2O layer is considerably small relative to that from Ar and CO layers. The delocalized nature of a valence hole in water ice is caused by some covalency in hydrogen bonds. Hydrated protons, H+(H2O)n, n=1,2,…,10, are emitted efficiently in electron stimulated desorption from water molecules adsorbed on the Ar layer; the ion yields are highest at the initial adsorption stage and decay steeply with increasing coverage. Coulombic repulsion between the hydrated protons confined in physisorbed nanoclusters is responsible for the explosive ion emission.  相似文献   

8.
We investigated the enhancement of the secondary ion intensity in the TOF-SIMS spectra obtained by Au+ and Au3+ bombardment in comparison with Ga+ excitation using polymer samples with different molecular weight distributions. Since the polymer samples used in this experiment have a wide molecular weight distribution, the advantages of the gold cluster primary ion source over monoatomic ion could accurately be evaluated. It was observed that the degree of fragmentation decreased by the usage of cluster primary ion beam compared with monoatomic ion beam, which was observed as a shift of the intensity distribution in the spectra. It was also found out that the mass effect of Au+ and Ga+ as monoatomic primary ion, resulted in about 10-60 times of enhancement for both samples with different molecular distributions. On the other hand, the Au3+ bombardment caused intensity enhancement about 100-2600 compared with Ga+ bombardment, depending on the mass range of the detected secondary ion species. The cluster primary ion effect of Au3+, compared with Au+, therefore, was estimated to be about 10-45.  相似文献   

9.
The effects of C60 cluster ion beam bombardment in sputter depth profiling of inorganic-organic hybrid multiple nm thin films were studied. The dependence of SIMS depth profiles on sputter ion species such as 500 eV Cs+, 10 keV C60+, 20 keV C602+ and 30 keV C603+ was investigated to study the effect of cluster ion bombardment on depth resolution, sputtering yield, damage accumulation, and sampling depth.  相似文献   

10.
Recent studies have shown TOF-SIMS to be an appropriate method for the detailed examination of the immobilization process of PNA and its ability to hybridize to unlabeled complementary DNA fragments. Unlabeled single-stranded DNA was hybridized to Si wafer biosensor chips containing both complementary and non-complementary immobilized PNA sequences. The hybridization of complementary DNA could readily be identified by detecting phosphate-containing molecules from the DNA backbone. An unambiguous discrimination was achieved between complementary and non-complementary sequences.In order to optimize detection parameters, different primary ions were applied, including monoatomic ions (Bi+) as well as cluster ions (Bi2+, Bi3+, Bi4+, Bi3++, Bi5++), and secondary ion yield behavior and formation efficiencies were studied. It was found that cluster primary ions resulted in a significantly increased yield of DNA-correlated fragments, enabling higher signal intensities and better secondary ion efficiencies.TOF-SIMS is undoubtedly a highly useful technique for identifying hybridized DNA on PNA biosensor chips. It is suitable for studying the complexity of the immobilization and hybridization processes and may provide a rapid method for DNA diagnostics. With the absence of the labeling procedure and the simultaneous increase of the phosphate signal as a result of increasing DNA sequence length, this technique comes to be especially useful for the direct analysis of genomic DNA.  相似文献   

11.
The minimum-detection limits achievable in SIMS analyses are often determined by transport of material from surrounding surfaces to the bombarded sample. This cross-contamination (or memory) effect was studied in great detail, both experimentally and theoretically. The measurements were performed using a quadrupole-based ion microprobe operated at a secondary-ion extraction voltage of less than 200 V (primary ions mostly 8keV O 2 + ). It was found that the flux of particles liberated from surrounding surfaces consists of neutrals as well as positive and negative ions. Contaminant species condensing on the bombarded sample could be discriminated from other backsputtered species through differences in their apparent energy spectra and by other means. The apparent concentration due to material deposited on the sample surface was directly proportional to the bombarded area. For an area of 1 mm2 the maximum apparent concentration of Si in GaAs amounted to 5 × 1016atoms/cm3. The rate of contamination decreased strongly with increasing spacing between the bombarded sample and the collector. The intensities of backsputtered ions and neutrals increased strongly with increasing mass of the target atoms (factor of 10 to 50 due to a change from carbon to gold). The effect of the primary ion mass (O 2 + , Ne+, and Xe+) and energy (5–10keV) was comparatively small. During prolonged bombardment of one particular target material, the rate of contamination due to species not contained in the sample decreased exponentially with increasing fluence. In order to explain the experimental results a model is presented in which the backsputtering effect is attributed to bombardment of surrounding walls by high-energy particles reflected or sputtered from the analysed sample. The level of sample contamination is described by a formula which contains only measurable quantities. Cross-contamination efficiencies are worked out in detail using calculated energy spectra of sputtered and reflected particles in combination with the energy dependence of the sputtering yield of the assumed wall material. The experimental findings are shown to be good agreement with the essential predictions of the model.  相似文献   

12.
Abstract

Electron diffraction studies have been made of polycrystalline Ni films irradiated with well separated beams of ions of different nature, namely ions of inert (He+, Ne+, Ar+, Kr+, Xe+) and reactive (N+ and O+) gases. The Ni films were prepared under vacuum conditions (P? 3·10?6Pa during evaporation) preventing an appreciable contamination of the films with impurities. The samples were irradiated at T? 300 K with ion beams of energies from 10 to 100 keV in the dose range between 5·1016 cm?2 and the value leading to sample destruction.

Irradiation with noble gas ions revealed no phase transitions in the Ni films. A similar result was obtained in irradiation of Fe and Cr films with He+ ions. The bombardment of Ni films with reactive gas ions does cause changes in the lattice structure of the samples under study, depending on the nature of the bombarding ions. The N+ ion bombardment gives rise to the hcp phase with the lattice parameters typical of the Ni3N compound, and the O+ ion bombardment results in the fcc phase with the NiO-type parameter.

The conclusion is drawn on the chemical origin of the phase transformations in the Ni films under ion bombardment. The necessity of revising the concept about the polymorphous nature of phase transformations induced in the films of transition metals by ion bombardment is substantiated.  相似文献   

13.
The spectra of secondary ion emission under the bombardment of a B-doped Si target by multiply charged Si q+ ions (q = 1?C5) have been studied in the energy range of 1 to 10 keV per unit of charge. A multifold increase in the yield of secondary cluster Sk n + ions, multiply charged Si q/+ ion (q = 1?C3), and H+, C+, B+, Si2N+, Si2O+ is observed as the charge of the multiply charged ions increases. The increase in the yield of secondary ions with increasing charge of the multiply charged-ion charge is most significant for ions with relatively high ionization potentials.  相似文献   

14.
The intensity dependence of the total and specific yields of positive ions desorbed from SrF2 under 193 nm and 308 nm excimer-laser irradiation has been investigated by the time-of-flight method. The following positive ion species have been detected: F+, Sr+, Sr++, SrF++ and SrF 2 + . The Sr+ and SrF+ emission yields are found to increase as E n, where E represents the laser energy per pulse. The exponent n is related to defect-initiated neutral particle emission and gas-phase ionization. The influence of surface damage on this power dependence is investigated. The F+ emission yield showed a quite different behaviour compared to that of the Sr+ and SrF+ emission. At both wavelengths the total positive ion emission yields saturate at a certain laser energy. In the saturation regime the SrF+ emission vanishes and alternative emission of F+ and Sr+ was observed at both wavelengths, but the total emission yield in the saturation regime (F+ + Sr+) remained constant. A Scanning Electron Microscope (SEM) was used to investigate the damage spots after laser irradiation for thermal effects.  相似文献   

15.
Effects of platinum silicon, graphite and PET substrates on the secondary ion yield of sub-monolayer and multilayer samples of Cyclosporin A following 20 keV Au+, Au3+and C60+ impacts have been investigated. The obtained results of sub-monolayer samples show that platinum enhances the yield of the pseudo-molecular ion following Au+ and Au3+ impacts due to the high density of the substrate that enables the energy of the primary ions to be deposited near the surface. C60+ impacts on sub-monolayer samples are less effective, but there is an enhancement on PET substrates. Impacts of 20 keV Au+ and Au3+ are not very efficient on multilayer samples. 20 keV C60+ impacts enhance the yields significantly, especially for the relatively high molecular weight [M+H]+ ion.  相似文献   

16.
In the work the focus is on the preparation of self-assembled monolayer-like films consisting of thiolated cyclodextrin on gold substrate and a characterization by using secondary ion mass spectrometry. The short (1 min) and long (1 h) time preparations of self-assembled monolayer-like films, resulting in submonolayer and monolayer regimes, are investigated, respectively. The observed species of thiolated cyclodextrin (M as molecular ion) self-assembled monolayer-like films are assigned to three groups: AuxHySz clusters, fragments with origin in cyclodextrin molecule associated with Au, and molecular ions. The group of AuxHySz (x = 2-17, y = 0-2, z = 1-5) clusters have higher intensities than other species in the positive and even more in negative mass spectra. Interestingly, the dependence between the number of Au and S atoms shows that with the increasing size of AuxHySz clusters up to 11 Au atoms, the number of associated S atoms is also increasing and then decreasing. Molecular species as (M−S+H)Na+, (M+H)Na+, AuMNa+, (M2−S)Na+, and M2Na+ are determined, and also in cationized forms with K+. The intensities of thiolated cyclodextrin fragments at the long time preparation are approximately 10 times higher than the intensities of the same fragments observed at the short time. The largest observed ions in thiolated cyclodextrin self-assembled monolayer-like films are AuM2 and Au2M. The thiolated cyclodextrin molecular ions are compared with hexadecanethiol molecular ions in the form of AuxMw where the values of x and w are smaller for thiolated cyclodextrin than for hexadecanethiol. This result is supported with larger, more compact, and more stabile thiolated cyclodextrin molecule.  相似文献   

17.
Secondary ion species of silicon oxide films have been investigated using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Characterization of thermally grown SiO2 films on silicon has been performed. A diagram showing secondary ion spectra of SiO2 films in both positive and negative polarities indicates the pattern of change in polarities and intensities of ion species from SiO+ to Si5O11. The ions mostly change from positive to negative polarity between SinO2n−1 and SinO2n. Ion peaks with the strongest intensities in the respective cluster ions correspond to the SinO2n+1 negative ion. Intensities of ion species of SinO2n+2 appear negligibly small. Ion species of Si3O+, Si3O2+ and Si3O3+ have been found at the interface between silicon and SiO2 films. The intensity patterns of these ion species compared to those of SiO2 films indicate that most of these species are not emitted from the SiO2 films, but likely from the SiO structures.  相似文献   

18.
Self-assembled monolayers represent well-defined systems that is a good model surface to study the effect of primary ion beams used in secondary ion mass spectrometry. The effect of polyatomic primary beams on both aliphatic and aromatic self-assembled monolayers has been studied. In particular, we analysed the variation of the relative secondary ion yield of both substrate metal-cluster (Aun) in comparison with the molecular ions (M) and clusters (MxAuy) by using Bi+, Bi3+, Bi5+ beams. Moreover, the differences in the secondary ion generation efficiency are discussed. The main effect of the cluster beams is related to an increased formation of low-mass fragments and to the enhancement of the substrate related gold-clusters. The results show that, at variance of many other cases, the static SIMS of self-assembled monolayers does not benefit of the use of polyatomic primary ions.  相似文献   

19.
For superionic and deformed perovskite-type H+-ion conductors, empirical relationships among atomic mass of host or substituted ion, H+-ion conductivity, σPR, activation energy, transition temperature Tc, etc. are proposed. We elucidate the roles of heavy host ion and specific crystal structures below and above the Tc on the H+-ion conduction by noticing a large amplitude of O-ion vibration mode arising from a large fourth order anharmonicity. We clarify the important role of strengthened ionic force for the host cation lattice at and above Tc on the H+-ion jumping, and interpret reasonably the σPR value depending on the concentration of doping ion, a large broadening of vibration band and an enhanced amplitude of OH-vibration mode, etc. We suggest the extension of this consideration to stabilized zirconium and superproton conductors, etc.  相似文献   

20.
Static ToF-SIMS was used to evaluate the effect of gold condensation as a sample treatment prior to analysis. The experiments were carried out with a model molecular layer (Triacontane M = 422.4 Da), upon atomic (In+) and polyatomic (Bi3+) projectile bombardment. The results indicate that the effect of molecular ion yield improvement using gold metallization exists only under atomic projectile impact. While the quasi-molecular ion (M+Au)+ signal can become two orders of magnitude larger than that of the deprotonated molecular ion from the pristine sample under In+ bombardment, it barely reaches the initial intensity of (M−H)+ when Bi3+ projectiles are used. The differences observed for mono- and polyatomic primary ion bombardment might be explained by differences in near-surface energy deposition, which influences the sputtering and ionization processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号