首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two different growth modes of manganese silicide are observed on Si(1 0 0) with scanning tunneling microscopy. 1.0 and 1.5 monolayer Mn are deposited at room temperature on the Si(1 0 0)-(2 × 1) substrate. The as-grown Mn film is unstructured. Annealing temperatures between room temperature and 450 °C lead to small unstructured clusters of Mn or MnxSiy. Upon annealing at 450 °C and 480 °C, Mn reacts chemically with the Si substrate and forms silicide islands. The dimer rows of the substrate become visible again. Two distinct island shapes are found and identified as MnSi and Mn5Si3.  相似文献   

2.
In order to understand the atomic structure of nanostructures self-assembled on the template with one-dimensional symmetry, Bi/Si(5 5 12) system has been chosen and Bi-adsorption steps have been studied by STM. With Bi adsorption, the clean Si(5 5 12) is transformed to (3 3 7) terraces with disordered boundary due to mismatched periodicities between (3 3 7) and (5 5 12), and Bi-dimer rows are formed inside the (3 3 7) unit as follows: Initially, when Bi atoms are deposited at the adsorption temperature of about 450 °C, they selectively replace Si-dimers and Si-adatoms and form adsorbed Bi-dimers and Bi-adatoms, respectively. If additional Bi is supplied, the Bi-dimers adsorb on the Bi-dimers and Bi-adatoms in the first layer. These adsorbed dimers in the second layer are facing each other to form a Bi-dimer pair with relatively stable p3bonding. Finally, a single Bi-dimer adsorbs above the Bi-dimer pair in the second layer, at which point the Bi layer thickness saturates. It has been concluded that the Bi-dimer pair with stable p3 bonding is the composing element in the second layer and such site-selective adsorption is possible due to the substrate-strain relaxation through inserting Bi-buffer layer limited to specific sites of the substrate.  相似文献   

3.
We have performed the structural and statistical analysis of Yb/Si(1 1 1) and Eu/Si(1 1 1) surfaces in the submonolayer regime utilizing low-energy electron diffraction and scanning tunneling microscopy (STM). The almost identical series of one-dimensional chain structures (e.g., 3 × 2/3 × 1, 5 × 1, 7 × 1, 9 × 1, and 2 × 1 phases) are found in order of increasing metal coverage for both adsorbed systems, however, only the Eu/Si system reveals the ‘√3’-like reconstruction before the 2 × 1 endpoint phase. The atomic models of chain structures are proposed and discussed. In particular, our results suggest the odd-order n×1 (n=5,7,9,…) intermediate reconstructions to incorporate the Seiwatz chains and honeycomb chains with the proportion of m:1, where . The statistical analysis of STM images is carried out to examine the correlation of atomic rows on Eu/Si and Yb/Si surfaces. It is found that Eu stabilizes more ordered row configuration compared to Yb, which can be explained in terms of indirect electronic interaction of atomic chains or/and different magnetic properties of adsorbed species.  相似文献   

4.
Based on the results of scanning tunneling microscopy studies of the reconstructed Si(5 5 12)-2 × 1 surface, its atomic structure has been found. It turns out that Si(5 5 12)-2 × 1 consists of four one-dimensional structures: honeycomb (H) chain, π-bonded H′ (π) chain, dimer-adatom (D/A) row, and tetramer (T) row. Its period is composed of three subunits, i.e., (i) (3 3 7) unit with a D/A row [D(3 3 7)], (ii) (3 3 7) unit with a T row [T(3 3 7)], and (iii) (2 2 5) unit with both a D/A and a T row. Two kinds of adjacent subunits, T(3 3 7)/D(3 3 7) and D(3 3 7)/(2 2 5), are divided by H chains with 2× periodicity due to buckling, while one kind of adjacent subunits, T(3 3 7)/(2 2 5), is divided by a π chain with 1× periodicity. Two chain structures, H and π chains, commute with each other depending upon the external stresses perpendicular to the chain, which is the same for two row structures, D/A and T rows. It can be concluded that the wide and planar reconstruction of Si(5 5 12)-2 × 1 is originates from the stress balance among two commutable chains and two commutable rows.  相似文献   

5.
Formation of the beryllium (Be) submonolayers on the Si(1 1 1)7 × 7 surface has been studied using scanning tunneling microscopy. It has been found that Be interaction with Si(1 1 1) at 500-700 °C results in a self-assembly formation of the four various types of the highly-ordered nanostructure arrays. The nanostructure arrays develop on top of the “soft” silicide layer, which period and orientation alter with the nanostructure growth: the shorter the nanostructure period, the larger the rotation angle. The main structural parameters of the silicide layer and nanostructure arrays have been established.  相似文献   

6.
We have studied Si(0 0 1)-Ga surface structures formed at Ga coverages of slightly above 0.50 monolayer (ML) at 250 °C by scanning tunneling microscopy (STM). 4 × 2-, 5 × 2-, and 6 × 2-Ga structures were observed in a local area on the surface. The 4 × 2-Ga structure consists of three protrusions, as observed in filled- and empty-state STM images. The characters of these structures are clearly different from those of other Si(0 0 1)-Ga structures. We also performed an ab initio calculation of the energetics for several possible models for the 4 × 2-Ga structure, and clarified that the three-orthogonal-Ga-dimer model is the most stable. Also, the results of comparing the simulated STM images and observation images at various bias voltages indicate that this structural model is the most favorable.  相似文献   

7.
Using scanning tunneling microscopy, ordered magic nanoclustering in the submonolayer Tl/Si(1 1 1)7 × 7 system has been studied. In contrast to the other known metal/silicon systems where ordered magic nanoclustering takes place, the Tl/Si(1 1 1) system has been found to be the only one to exhibit the diverse magic clustering. In the present study, occurrence of, at least, three distinct types of the well-defined Tl/Si(1 1 1) magic clusters has been detected.  相似文献   

8.
A surface preparation method with fine SiO2 particles in water is developed to flatten Si(0 0 1) surfaces on the nanometer scale. The flattening performance of Si(0 0 1) surfaces after the surface preparation method is investigated by scanning tunneling microscopy. The observed surface is so flat that 95% of the view area (100 × 100 nm2) is composed of only three atomic layers, namely, one dominant layer occupying 50% of the entire area and two adjacent layers. Furthermore, a magnified image shows the outermost Si atoms regularly distributed along the 〈1 1 0〉 direction on terraces.  相似文献   

9.
A. Khatiri 《Surface science》2004,549(2):143-148
Exposure of the As-terminated GaAs(0 0 1)-c(4 × 4) reconstructed surface to atomic hydrogen (H) at different substrate temperatures (50-480 °C) has been studied by reflection high-energy electron diffraction (RHEED) and scanning tunnelling microscopy (STM). Hydrogen exposure at low temperatures (∼50 °C) produces a disordered (1 × 1) surface covered with AsHx clusters. At higher temperatures (150-400 °C) exposure to hydrogen leads to the formation of mixed c(2 × 2) and c(4 × 2) surface domains with H adsorbed on surface Ga atoms that are exposed due to the H induced loss of As from the surface. At the highest temperature (480 °C) a disordered (2 × 4) reconstruction is formed due to thermal desorption of As from the surface. The results are consistent with the loss of As from the surface, either through direct thermal desorption or as a result of the desorption of volatile compounds which form after reaction with H.  相似文献   

10.
In this work ultrathin iron silicide epilayers were obtained by the reaction of iron contaminants with the Si(1 1 1) substrate atoms during high-temperature flash. After repeated flashing at about 1125 °C, reflection high-energy electron diffraction indicated silicide formation. Scanning tunneling microscopy revealed highly ordered surface superstructure interrupted, however, by a number of extended defects. Atomic-resolution bias-dependent imaging demonstrated a complex nature of this superstructure with double-hexagonal symmetry and (2√3×2√3)-R30° periodicity. Among the possible candidate phases, including metastable FeSi2 with a CaF2 structure and FeSi1+x with a CsCl structure, the best match of the interatomic distances to the measured 14.4 Å × 14.4 Å unit cell dimensions pointed to the hexagonal Fe2Si (Fe2Si prototype) high-temperature phase. The fact that this phase was obtained by an unusually high-temperature flash, and that neither its reconstruction nor its semiconducting band-gap of about 1.0 ± 0.2 eV (as deduced form the I-V curves obtained by scanning tunneling spectroscopy) has ever been reported, supports such identification. Due to its semiconducting properties, this phase may attract interest, perhaps as an alternative to β-FeSi2.  相似文献   

11.
We have studied the scaling behavior of two-dimensional island density during submonolayer growth of CaF2 on vicinal Si(1 1 1) surfaces using scanning tunneling microscopy. We have analyzed the morphology of the Si(1 1 1) surfaces where CaF2 partial monolayers with coverages of about 0.1 monolayer are deposited at ∼600 °C. The number density of terrace nucleated islands increases with substrate terrace width l as ∼l4 in a low island density regime. This scaling behavior is consistent with predictions for the case of the irreversible growth of islands.  相似文献   

12.
The very first stages of the growth of NiO on Cu(1 1 1) is examined on a microscopic scale. The paper focuses on the morphological and structural characterization of nanostructures formed in the 0-1 Å thickness range. Ultra-thin NiO films, obtained through evaporation of a Ni rod under an oxygen atmosphere were grown at 550 K. In the early stages of the growth the oxide film morphology shows 10-30 nm large, monolayer high, islands with a partial incorporation of metallic Ni in the first Cu(1 1 1) surface plane. The first layer is formed by an epitaxial atomic layer exhibiting a STM contrast similar to the one observed on adsorbed oxygen on Cu(1 1 0). A NiO cluster nucleation and coalescence mechanism is proposed in order to explain the formation of the second NiO layer. A α-Ni2O3 hexagonal phase, or a structural distortion of the NiO(1 1 1)()R30° structure could both explain the complex LEED patterns.  相似文献   

13.
B.J. Gibbons 《Surface science》2006,600(12):2417-2424
We have measured how the initial terrace width l0 on vicinal Si(1 1 1) surfaces influences the rate of step bunching and the minimum terrace width within a bunch when direct-current heated at 940-1290 °C. A comparison of this data with analytic solutions and numerical simulations of the conventional “sharp-step” model give strong evidence that the kinetic length d is relatively small (d < ∼20 nm) in both temperature regime I (∼850-950 °C) and regime III (∼1200-1300 °C), in which step-down current is required for step bunching. This indicates that surface mass transport is diffusion-limited in both regimes I and III when l0 > 20 nm, and hence that the adatom attachment- and terrace diffusion-hopping rates are of comparable magnitude. We also observe similar scaling with initial terrace width in temperature regime II (∼1040-1190 °C), in which step-up current is required for bunching, suggesting a similar step bunching mechanism in all three temperature regimes.  相似文献   

14.
Using scanning tunneling microscopy, phase formation and temperature-driven phase transitions in Tl/Ge(1 0 0) system have been studied. Evolution of Tl overlayer structure has been considered for three temperature ranges, including around room temperature (RT), high-temperature (HT) (350-450 K) and low-temperature (LT) (20-100 K) ranges. Upon RT growth, a 2 × 1-Tl phase develops in submonolayer range and is completed at around 1 ML of Tl. Cooling of the RT-deposited Tl overlayer results in formation of a set of various LT structures. These are 1D chains, 5 × 4-Tl and “stroked” phases observed in submonolayer range and a long-period c(12 × 14)-Tl phase developed at around 1 ML. All transitions between these RT and LT structures are reversible. At doses beyond 1 ML, RT deposition of Tl onto Ge(1 0 0) leads to the growth of second-layer Tl stripes, forming arrays with a 1 × 4 periodicity. Meanwhile, structure of the first layer also changes and it displays a set of various reconstructions, c(2 × 8), c(10 × 6) and c(10 × 7). All these structures remain unchanged upon cooling to LT. Growth at HT as well as heating of RT-deposited Tl overlayer irreversibly produces 3 × 2-Tl phase whose rows become decorated by second-layer Tl stripes at prolonged Tl deposition.  相似文献   

15.
The orientational phase diagram and morphology of the Eu-adsorbed Si(1 0 0) surface miscut by 0.4° have been studied by low-energy electron diffraction and scanning tunneling microscopy. We demonstrate that the original double-domain configuration with single-layer steps on the Si(1 0 0) substrate can be drastically broken at 0.4 monolayer (ML) of Eu. At this coverage, the ordered domain pattern formed by topographically non-equivalent terraces with Eu-induced 2 × 3 and “2 × 1” (so-called “wavy” structure) reconstructions is found, while no orthogonal 3 × 2 and “1 × 2” domains are observed. A model of the single-domain surface is proposed. The origin of the double- to single-domain transition found for the Eu/Si(1 0 0) system is discussed.  相似文献   

16.
It has been a common belief that the one-dimensional structures observed by STM at low coverage of Pb on Si(1 0 0) are buckled Pb-Pb dimer chains. However, using first-principles density functional calculations, we found that it is energetically favorable for Pb adatoms to intermix with Si atoms to form mixed dimer chains on Si(1 0 0), instead of Pb-Pb dimer chains as assumed in previous studies. Up to a Pb coverage of 0.125 ML, mixed PbSi dimer chain is 0.19 eV per Pb atom lower in energy than Pb dimer chain.  相似文献   

17.
The adsorption, diffusion and ordering of hydrogen on Pd(1 1 1) was studied by scanning tunneling microscopy in the temperature range of 37-90 K. At low coverage isolated hydrogen atoms were observed. They formed √3×√3-1H islands as the coverage increased. Above 1/3 monolayer (ML) coverage areas of a new phase with √3×√3-2H structure were formed, with both structures coexisting between 1/3 and 2/3 ML. Finally a 1 × 1 structure was formed after high exposures of hydrogen above 50 K, with a coverage close to 1 ML. Atomically resolved images reveal that H binds to fcc hollow sites.  相似文献   

18.
Au island nucleation and growth on a Si(1 1 1) 7 × 7 vicinal surface was studied by means of scanning tunneling microscopy. The surface was prepared to have a regular array of step bunches. Growth temperature and Au coverage were varied in the 255-430 °C substrate temperature range and from 1 to 7 monolayers, respectively. Two kinds of islands are observed on the surface: Au-Si reconstructed islands on the terraces and three-dimensional (3D) islands along the step bunches. Focusing on the latter, the dependence of island density, size and position on substrate temperature and on Au coverage is investigated. At 340 °C and above, hemispherical 3D islands nucleate systematically on the step edges.  相似文献   

19.
Room temperature (RT) adsorption of nitric oxide (NO) on Ir(1 1 1) was studied by scanning tunneling microscopy (STM). At low exposures, NO molecules can not be imaged by STM, because at RT the diffusion of NO is much faster than the STM scanning speed. At high exposures near the saturation coverage, however, a well-ordered 2 × 2 structure is observed. The coverage of the major 2 × 2 species is 0.25 and they can be assigned to the NO molecules adsorbed on the Ir ontop sites. A small number of less bright spots are assigned to nitrogen atoms produced by dissociation. Their number increases by annealing the NO-saturated surface at 380 K. A small number of another dissociation product, oxygen, are observed as black lines, indicating that the diffusion of oxygen atoms is fast. Scratch-like noise features were also detected by the STM, which suggests that a mobile precursor state exists, which was clearly shown by the effects of electron irradiation from the STM tip. These results are consistent with the previous molecular beam studies. Hopping of the 2 × 2 ordered NO species was frequently observed at the anti-phase domain boundaries and edges of the 2 × 2 islands.  相似文献   

20.
J. M. Ripalda  P. A. Bone  P. Howe  T. S. Jones   《Surface science》2003,540(2-3):L593-L599
The GaAs(0 0 1) surface morphology and structure during growth by migration enhanced epitaxy (MEE) has been studied by reflection high energy electron diffraction and scanning tunneling microscopy. Changes induced by varying the incident As/Ga flux ratio, growth temperature and the total amount of material deposited in each cycle have been studied and the results compared with GaAs(0 0 1) growth by conventional molecular beam epitaxy (MBE). Comparison of the surface morphology at the end of the Ga and As cycles indicates no clear evidence for any enhancement in the Ga adatom diffusion length during the Ga cycle. However, the morphological anisotropy of the growth front does change significantly and it is proposed that this changing anisotropy during MEE enables Ga adatom diffusion along both azimuths. The surface anisotropy during MEE growth is found to increase with the Ga/As ratio. Although there is a clear correlation between composition and morphology, we have also found that highly ordered and flat surfaces are not necessarily an indication of stoichiometric material. We also attempt to clarify a recent controversy on the structure of the c(4 × 4) reconstruction by studying the surface structure at the end of the As cycle as a function of the As/Ga ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号