首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract— Previous reports showed that the photosensitizer mono- l -aspartyl chlorin e6 (NPe6) binds to serum proteins. However, the influence of this binding on the cellular uptake and photodynamic therapy (PDT) phototoxicity of NPe6 is still undefined. In this paper, we studied how serum in medium affected the P388 cellular uptake and PDT phototoxicity of NPe6 in vitro. This was assessed by (1) detection of the red shift (654 nm Q band peak of absorption) induced by protein binding NPe6; (2) detection of intracellular concentration of NPe6 by HPLC and (3) measurements of the cell survival ratio after PDT by MTT assay. The 654 nm Q band peak of NPe6 shifted to 665 nm after binding of NPe6 and serum proteins. The protein-bound NPe6 cannot be uptaken by cells, thus there was no PDT phototoxicity. Nevertheless, phototoxicity recovered when the concentration of NPe6 excessed the serum protein binding ability or there was free serum protein in the medium. These data suggested that the cellular uptake of NPe6 is inhibited by serum components in the medium, and that only free NPe6 is accumulated by P388 cells even during relatively long incubations. The cytotoxicity of PDT mainly depends on the free NPe6 level in the medium.  相似文献   

2.
Abstract 125I- N 6-(N-[6-N-{5-iodo-4-azidosalicyl}-aminohexyl]-aminocarbamoylmethyl)-nicotinamide adenine dinucleotide (125I- N 6-I-ASA-AH-NAD+) was synthesized by coupling N 6 -([6-aminohexyl]-carbamoylmethyl)-NAD+ with 4-azidosalicylic acid N-hydroxysuccinimide ester followed by radioiodination. The utility of 125I-N 6 -I-ASA-AH-NAD+ as an effective site-directed photoprobe was demonstrated by the photolabeling of both glutamate dehydro-genase and 15-hydroxyprostaglandin dehydrogenase. Both enzymes can be saturated with labeled probe with apparent dissociation constants comparable to those reported for NAD+. Photoincorporation of the probe into both enzymes was found to be protected specifically by NAD+. These results indicate that 125I- N 6-I-ASA-AH-NAD+ can be a specific photoprobe for NAD+-linked enzymes.  相似文献   

3.
To enhance drug cellular uptake, a biodegradable terpolymer is synthesized using taurine, N,N‐Bis (acryloyl) cystamine, and dodecylamine as raw materials by Michael addition terpolymerization. The terpolymer is transformed to zwitterionic nanoparticles (NPs) through self‐assembly. The surface charge of the NPs is convertible from negative at pH 7.4 to positive at pH 6.5, which endows the NPs’ excellent nonfouling feature in bloodstream and effective uptake in tumor cells. The NPs display varied morphologies from solid micelles to polymersomes and nanorods depending on molar ratios of the structural units involved. The NPs can be biodegraded in l ‐glutathione (GSH) solution due to the split of disulfide bonds in main chains of the terpolymers. The NPs demonstrate good pH/reducing responsiveness in drug delivery and can be potentially used as anticancer drug vehicles for enhancement of cellular uptake of anticancer drug.

  相似文献   


4.
Lamotrigine (LTG) [3,5-diamino-6-(2,3-dichlorophenyl)-1,2,4-triazine], an anticonvulsant and antidepressant drug Lamictal®, produces a (photo)toxic response in some patients. LTG absorbs UV light, generating singlet oxygen (1O2) with a quantum yield of 0.22 in CH2Cl2, 0.11 in MeCN and 0.01 in D2O. A small production of superoxide radical anion was also detected in acetonitrile. Thus, LTG is a moderate photosensitizer producing phototoxicity and oxidizing linoleic acid. LTG is a weak 1O2 quencher ( k q = 3.2 × 105  m −1 s−1 in MeCN), but its photodecomposition products in dimethyl sulfoxide (DMSO) quenched 1O2 very efficiently. Upon intense UV irradiation from a xenon lamp, LTG was photobleached rapidly in DMSO and slowly in acetonitrile, alcohol and water. The rate increased significantly when laser pulses at 266 nm were employed. The photobleaching products generated 1O2 twice as strongly as LTG. Photobleaching was usually accompanied by the release of chloride anions, which increased in the presence of ascorbic acid. This suggests the formation of aryl radicals via dechlorination, a process which may be responsible for the photoallergic response observed in some patients. Our results demonstrate that LTG is a moderate generator of 1O2 prone to photodechlorination, especially in a reducing environment, which can contribute to the reported phototoxicity of LTG.  相似文献   

5.
自发现含铋铜氧化物的高温超导性以来,采用各种复杂程度方法对电子结构的计算已经在文献中报道.它们集中讨论了能带结构,态密度和Fermi面的性质,但很少报道铜氧对间的电荷涨落。而价态变动对超导电性起着至关重要的作用,因此本文对Bi_2Sr_2CuO_6进行了紧束缚带计算,探讨了电子缺陷和氧呼吸式振动对铜和氧电荷分布的影响。  相似文献   

6.
研究了细胞培养基中的胎牛血清(FBS)对DNA四面体(Tetrahedral DNA nanostructure,TDNs)进入HeLa细胞的速度和内吞途径的影响.采用自组装技术得到荧光标记的TDNs结构,利用HPLC技术分离得到纯度>95%的TDNs单体,分别采用流式细胞术和共聚焦显微成像等技术比较了在有无血清的情况下,细胞摄取量随时间的变化以及FBS对TDNs摄取途径的影响.实验结果表明,TDNs在培养基和细胞裂解液环境中可以稳定存在12 h以上,培养基中的FBS能够提高HeLa细胞对四面体的摄取量, 但并未改变TDNs进入HeLa细胞的内吞途径.本研究揭示了环境中蛋白质等生物分子对于DNA四面体结构与细胞界面相互作用的影响,为基于DNA纳米材料的细胞学纳米载体的设计和优化提供了新思路.  相似文献   

7.
Abstract— A correction is offered to the approximate values previously given by Mendenhall (1978) for the enthalpy of formation and entropy of O2(a1Δg) and O2(b1+) between 298 and 1500 K. Accurate values have been calculated for the functions together with the equilibrium constants for the formation of these species from O2(X3σg-).  相似文献   

8.
We measured the photosensitivity of an artificial tetranuclear oxo–Mn(IV) complex, [Mn4O6(bpea)4]Br4, which has an adamantane-shaped {Mn4O6}4+ core. Illumination caused changes in the absorption spectrum of the compound consistent with a one-electron reduction in the compound. Bromide appears to be the most probable electron donor in the reaction system. Chemical modification of the cluster appears to destabilize it, predisposing it to reductive degradation. UV light was more efficient than visible light in causing the changes. The data support the suggestion that the natural oxygen-evolving Mn complex is photosensitive and can oxidize components of the oxygen-evolving complex in its excited state causing photoinhibition, and that photostability is an important issue in designing Mn complexes for artificial photosynthesis. Furthermore, light-induced oxidation of bromide by [Mn4O6(bpea)4]4+ may suggest that oxidation of chloride is involved in natural water splitting or has been involved during the evolution of the water-splitting enzyme.  相似文献   

9.
Abstract— Mercury in contact with oxygen is rapidly removed from the gas phase when irradiated with the 253.7 run resonance line. The final, steady-state concentration of mercury depends on the total pressure, the mol % of oxygen, and the presence (or absence) of mercury droplets in the reaction cell. The effect of oxygen on the mercury photosensitized formation of allene from methylenecyclobutane and trans -2-butene from cis -2-butene at room temperature was investigated. After correction for competitive quenching, collisional deactivation of the excited methylenecyclobutane, and decreased absorption (due to mercury depletion), the maximum decrease in the allene yield was only 12.3%. This decrease could be caused by the reaction of oxygen atoms or ozone with the product allene. In most of the experiments with mercury-oxygen- cis -2-butene mixtures, the corrected quantum yield of the trans -isomer is unchanged from the yield in the absence of oxygen (0.50). Thus oxygen cannot be used to detect the participation of triplet state molecules in mercury photosensitized reactions.  相似文献   

10.
Abstract— The efficiency of ruthenium complexes for photosensitizing DNA damage depends on the oxidizing character of their ligands. Here we report on the difference in behavior of tris(2.2'-bipyrazyl)ruthenium(II) (Ru[bpz]32+), tris(2,2′-bipyridyl)ruthenium(II) (Ru[bipy]32+) and cis-dichlorobis(2,2′-bipyrazyl)ruthenium(II) (Ru[bpz]2Cl2). Upon irradiation at 436 nm, Ru(bpz)32+was far less stable than Ru(bipy)32+. Ru(bpz)32+in phosphate buffer containing NaCl undergoes a photoanation reaction leading to the formation of Ru(bpz)2Cl2, as previously reported also in organic media. In the presence of phage φX174 DNA, Ru(bpz)32+photosensitized the formation of single strand breaks with an efficiency that was, at the beginning of irradiation, similar to that of Ru(bipy)32+. After 8 min of irradiation, the cleavage efficiency of Ru(bpz)32+reached a plateau that may correspond to its photode-composition. For the same conditions, Ru(bpz)2Cl2 did not induce DNA breakage. Scavenging experiments showed that, in the presence of oxygen, DNA cleavage induced by Ru(bpz)32+partly resulted from the formation of singlet oxygen and hydroxyl radical while in the absence of oxygen an additionnal mechanism involving electron transfer between the excited state of the ruthenium complex and DNA is proposed. The ICP measurement showed that Ru(bpz)32+and Ru(bpz)2Cl2 gave rise to covalent binding onto DNA in contrast with Ru(bipy)32+, which did not bind to DNA under the experimental conditions. The results are discussed with regard to the potential use of these photosensitizers in phototherapy.  相似文献   

11.
13C-enriched bacteriochlorophyll c (S[I, E] BChl c F) was suspended in a 1:3 mixture of methylene chloride and carbon tetrachloride to form an aggregate showing the Qy absorption above 740 nm; changes in the 13C chemical shifts were traced when methanol was titrated to dissolve the aggregate, and then, the changes were correlated to the ring-current effects due to the neighboring macrocycles in the aggregate. A pair of aggregate structures has been proposed based on the ring-current effects on both 1H and 13C nuclei; the monomeric units are stacked together to form an inclined column with different sliding directions, in which the y-axis of the molecule is parallel to the long axis of the column. In order to confirm this pair of models, the ring-current effects on the 1H and 13C nuclei were calculated based on both the magnetic-dipole and the loop-current approximations. Further, an application of three-dimensional F1 13C-edited F3 13C-filtered heteronuclear single-quantum correlation-nuclear Overhauser effect spectroscopy to the above aggregate consisting of a 1:1 mixture of 13C-labeled and unlabeled BChl c succeeded in detecting selectively the 1H–1H intermolecular nuclear Overhauser effect correlations, which established the coexistence of the above pair of stacked structures in the aggregate.  相似文献   

12.
The electronic and thermal energy differences, ΔE(t-s); enthalpy differences, ΔH(t-s); and free energy differences between the singlet and triplet states, ΔG(t-s), were calculated for C6H6C, C6H6Si, C6H6Ge, C6H6Sn, and C6H6Pb at the B3LYP/6-311++G (3df, 2p) level. The singlet-triplet splitting, G s-t, of C6H6C, C6H6Si, C6H6Ge, C6H6Sn, and C6H6Pb generally increased from C6H6C toward C6H6Pb. The most stable tautomers and conformers were suggested for the singlet and triplet states of C6H6M (M = C, Si, Ge, Sn and Pb). The geometrical parameters were calculated and discussed. The text was submitted by the authors in English.  相似文献   

13.
Abstract— The kinetics of the oxidation of a homologous series of 4,4'-di(n-alkyl)-bipyridinium (viologen) radicals by Ru(NH3)63+ in vesicle suspensions was studied using laser flash photolysis. The viologen radicals were produced photochemically in the bilayer membrane phase of the vesicles by electron transfer from the triplet state of chlorophyll-α. At high concentrations of Ru(NH3)63+, the rate of oxidation of the viologen radicals in the aqueous phase was limited by the rate at which the radicals diffused from the membrane to the aqueous phase. The exit rate constant decreased from 2 × 105 s−1 for the methyl viologen radical to 4 × 103 s−1 for the pentyl viologen radical. Both the exit rate constants and the calculated values for the equilibrium association constants of the viologen radicals were unexpectedly insensitive to the length of their alkyl substituents. This, as well as other data, suggests that the radicals that diffused into the aqueous phase tended to remain associated with the membrane-water interface.  相似文献   

14.
The crystal structure of Sr2ErRuO6 has been refined from neutron powder diffraction data collected at room temperature; space group P21/n, A = 5.7626(2), B = 5.7681(2), C = 8.1489(2) Å, β = 90.19(1)°. The structure is that of a distorted perovskite with a 1:1 ordered arrangement of Ru5+ and Er3+ over the 6-coordinate sites. Data collected at 4.2 K show the presence of long range antiferromagnetic order involving both Ru5+ and Er3+. The temperature dependence of the sublattice magnetizations is described. The crystal structure of Ca2NdRuO6 is also that of a distored perovskite (P21/n, A = 5.5564(1), B = 5.8296(1), C = 8.0085(1) β = 90.19(1)°. The β = 90.07(1)°) with a random distribution of Ca2+ and Nd3+ on the A site and a 1:1 ordered arrangement of Ca2+ and Ru5+ on the 6-coordinate B sites. The Ru5+ sublattice is antiferromagnetic at 4.2 K but there is no evidence for magnetic ordering of the Nd3+ ions. Ca2HoRuO6 is also a distorted perovskite (P21/n, A = 5.4991(1), B = 5.7725(1), C = 7.9381(2), β = 90.18(1)° at 4.2 K) with a cation distribution best represented as Ca1.46Ho0.54[Ca0.54Ho0.46Ru]O6. There is no ordering among the Ca3+ or Ho3+ ions on either the A or the B sites, but the Ca/Ho ions form a 1:1 ordered arrangement with Ru5+ on the B sites. At 4.2 K the Ru5+ ions adopt a Type I antiferromagnetic arrangement but there is no evidence of long range magnetic ordering among the Ho3+ ions.  相似文献   

15.
The clinopyroxene compounds LiFeSi2O6 and LiFeGe2O6 have been investigated by constant wavelength neutron diffraction at low temperatures and by bulk magnetic measurements. Both compounds are monoclinic, space group P21/c and do not exhibit a change in nuclear symmetry down to 1.4 and 5 K respective. However, they transform to a magnetically ordered state below 20 K. LiFeSi2O6 shows a simple magnetic structure with no indication of an incommensurate modulation. The magnetic space group is P21/c′ and the structure is described by a ferromagnetic coupling of spins within the infinite M1 chains of edge-sharing octahedra, while the coupling between these M1 chains is antiferromagnetic. The magnetic phase transition is accompanied by magnetostriction of the lattice when passing through the magnetic phase transition. The magnetic structure of LiFeGe2O6 is different to the silicate: the space group is and the magnetic unit cell doubled along the a-direction. Within the M1 chains spins are coupled antiferromagnetically, while the chain to chain coupling is antiferromagnetic when coupling goes via the GeB tetrahedron and ferromagnetic when it goes via the GeA tetrahedron.  相似文献   

16.
Profile analysis of high-resolution, powder neutron-diffraction data was used to refine the previously reported structures of the ordered, distorted perovskites Ba2LaRuO6 and Ca2LaRuO6. Low-temperature neutron diffraction experiments showed that, at 2K, the former is a Type IIIa antiferromagnet while the latter is Type I. Both compounds have an ordered magnetic moment of μRu ? 1.95μB per Ru5+ ion. The Néel temperature of Ba2LaRuO6 was determined to be 29.5K, and the covalent mixing between the ruthenium and nearest-neighbor anions is described by A2π = 8.2 ± 1% for Ba2LaRuO6 and 8.6 ± 1% for Ca2LaRuO6. The ionic radius of a Ru5+ ion is 0.56 Å. These data are consistently interpreted within the framework of a strongly correlated, half-filled π1 band. Extension of this interpretation to the magnetic data for the perovskites CaRuO3 and SrRuO3 leads to a fundamental theoretical prediction.  相似文献   

17.
Abstract— Laser flash photolysis of trans -[Rh(dppe)2X2][PF6] (X=Br and I; dppe=bis(diphenylphosphino)ethane) in CH2Cl2 or CH3CN produces the d7 Rh(II) radicals, [Rh(dppe)2X]+, and halogen atoms. The kinetics of the disappearance of [Rh(dppe)2X]+ radicals in CH2Cl2 or CH3CN were mixed order: H-atom abstraction from solvent to produce the rhodium hydrides, [RhH(dppe)2X][PF6], and Rh/X recombination. In the poor H-atom donor solvent, benzonitrile, Rh/Br recombination was observed to be uncomplicated by competing H-atom abstraction. The hydride complexes [RhH(dppe)2X][PF6], formed by H-atom abstraction were completely characterized by 31P{1H}-NMR, 1H-NMR, and mass specrometry. Cyclohexene was used as an effective trap for photogenerated Br atoms and yielded bromocyclohexane and 3-bromocyclohexene in a relative yield, 1:9. The photochemical mechanism is discussed in light of the transient absorbance and trapping studies.  相似文献   

18.
The uptake and assimilation of HCO3 by the green unicellular alga Monoraphidium braunii can be monitored by the alkalinization of the external medium or by the O2 evolution associated with the uptake and reduction of this anion. The activation of HCO3 uptake in this microalga required the irradiation of the cell suspensions with low photon fluence rates of short wavelength radiation. Thus, when the cells were irradiated with strong red light in the presence of HCO3, very little alkalinization of the external medium or O2 evolution could be observed. The O2 evolution rates measured under red light could be due to the assimilation of the CO2 derived from the HCO3 present in the medium. The blue light-dependent O2 evolution rates were not diminished by a periplasmic carbonic anhydrase inhibitor, suggesting that HCO3 -dependent O2 evolution was due to the photoactivation of a selective HCO3 uptake system at the plasma membrane. The action spectrum for HCO3- uptake in M. braunii was very similar to those reported for NO3- and CI- suggested that a flavoprotein may be the photoreceptor for this response.  相似文献   

19.
Microcrystalline solid dysprosium(III) hexacyanoferrate(II) was synthesized by co-precipitation in aqueous solution. The resulting solid has been studied by Fourier transform infrared spectroscopy, X-ray analysis and solid state electrochemistry. The use of a cavity microelectrode was necessary to explore a wide range of time scale and minimize the (undesired) capacitive currents. Cyclic voltametric experiments were very helpful to understand the kinetic of charge transfer in such microstructure. A structure-properties relationship has been established from the crystallographic and the electrochemical properties. A square-scheme is presented to explain the unique electrochemical behavior of hexacyanoferrate containing dysprosium since this compound exhibits a second redox system. The solid presents an open channel-like morphology in which the motion of charged species occurs during the redox processes. Precisely, the electronic transfer is accompanied by a cation diffusion inside the microcrystalline structure. The size of these channels strongly suggests that the kinetic of charge transfer is limited by the cation transport into these structures.  相似文献   

20.
Previously we reported that fluorescent light (FL) illumination prior to UV irradiation (FL preillumination) had multiple effects on the repair of cyclobutane pyrim-idine dimers (CPD) and (6-4) photoproducts ([6-4] PD) in cultured goldfish cells (RBCF-1) at the exponentially growing phase. In this study, it is shown that even under the confluent condition of RBCF-1 cells, FL preillumination increased the disappearance of (6-4) PD in the dark. In addition, both at confluence and at the exponentially growing phase, the disappearance of (6-4) PD after PR treatment was increased by FL preillumination to RBCF-1 cells. Moreover, it was found that H2O2 pre-treatment, followed by UV irradiation, of the exponentially growing cells also enhanced the disappearance of (6-4) PD in the dark and by photorepair treatment. The degree of enhancement by H2O2 pretreatment was almost the same as that by FL preillumination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号