首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 528 毫秒
1.
The fluorescence of tryptophan, reduced nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavin adenine dinucleotide (FAD) were characterized in normal human breast cells as well as in malignant human breast cells of similar and dissimilar genetic origins. Fluorescence measurements of each cell line were made over a wide range of cell concentrations, and the fluorescence per cell was determined from the slope in the linear range of the fluorescence intensity vs cell concentration plot. All of the malignant cells showed a statistically significant decrease in the tryptophan fluorescence per cell relative to that of the normal cells. No statistically significant differences were observed in the NAD(P)H or FAD fluorescence per cell between the normal and any of the malignant cell types. NAD(P)H fluorescence was also imaged from monolayers of the normal and malignant cells (of similar genetic origin) using two-photon fluorescence microscopy. A statistically significant decrease in the NAD(P)H fluorescence with malignancy was observed, suggesting that fluorescence imaging of single cells or the cell monolayer preparation may provide more contrast than volume-averaged fluorescence measurements of cells in suspension. In conclusion, the differences in normal and malignant human breast tissue fluorescence spectra may be attributed in part to differences in the intrinsic cellular fluorescence of normal and malignant breast epithelial cells.  相似文献   

2.
玫瑰是蔷薇科蔷薇属落叶丛生灌木,品种繁多,其花色、香、形具美,有极高的观赏和经济价值,我国玫瑰资源丰富,古代人们就将玫瑰用于染色、食品和药用等领域,现在玫瑰主要用于商品花卉和提取玫瑰精油.  相似文献   

3.
The excitation and emission spectra have been determined for the fluorescence from trypto-phan residues in dry keratin. The fluorescence decay was also measured and shown to be a single exponential with a rather long lifetime of 6.9 ns. It is suggested that the emission takes place from a state formed by interaction between the 1La state of the tryptophan residues and neighbouring polar or polarizable groups in the protein. The fluorescence excitation spectrum displays a peak at 290 nm, and its appearance at this position rather than at 280 nm, which is the absorption maximum of tryptophan, is believed to arise from inner filtering by the tyrosine residues in keratin.  相似文献   

4.
利用Wittig反应合成了一个以萘为π-Center的对称型“D-π-D”有机绿色发光化合物1,4 双(4′-N,N-二甲基氨基苯乙烯基)萘(BDASN),并测试了其在不同环境中的光谱性质.在378nm激发波长的激发下,BDASN显示出很强的荧光发射峰,峰位在521nm(CH2Cl2).随着溶剂极性增大,最大发射波长红移且荧光强度降低,与“D-π-A”分子具有相似的分子内电荷转移(TICT)行为.在β-环糊精(β-CD)中BDASN的绿色发光带被猝灭,同时在450nm附近蓝发光带的荧光强度骤增.  相似文献   

5.
Electron-transferring flavoprotein (Holo-ETF) from Megasphaera elsdenii contains two FAD's, one of which easily dissociates to form Iso-ETF (contains one FAD). Time-resolved fluorescence of FAD in Iso-ETF, and Holo-ETF were measured at 5 degrees C and 25 degrees C. Wavelength-dependent fluorescence decays of the both ETF at 5 degrees C and 25 degrees C were analyzed to resolve them into two independent spectra. It was found that Iso-ETF displayed two spectra with lifetime of 0.605 ns (emission peak, 508 nm) and with lifetime of 1.70 ns (emission peak, 540 nm) at 5 degrees C, and with lifetime of 0.693 ns (emission peak, 508 nm) and with lifetime of 2.75 ns (emission peak, 540 nm) at 25 degrees C. Holo-ETF displayed two spectra with lifetime of 0.739 ns (emission peak, 508 nm) and with lifetime of 2.06 ns (emission peak, 545 nm) at 5 degrees C, and with lifetime of 0.711 ns (emission peak, 527 nm) and with lifetime of 3.08 ns (emission peak, 540 nm) at 25 degrees C. Thus fluorescence lifetimes of every spectrum increased upon elevating temperature. Emission peaks Iso-ETF did not change much upon elevating temperature. Activation enthalpy changes, activation entropy changes and activation Gibbs energy changes of quenching rates all displayed negative. Two emission species in the both ETF may be hydrogen-bonding isomers, because isoalloxazine ring of FAD contains four hydrogen acceptors and one donor.  相似文献   

6.
Abstract— This paper presents a characterization of the fluorescence properties of human eosinophils isolated from peripheral blood of normal donors over a wide range of excitation and emission wavelengths. Circulating eosinophils possess three fluorescence excitation emission maxima: one at 280 nm excitation, 330 nm emission, attributable to tryptophan fluorescence, and currently unassigned peaks at 360 nm excitation, 440 nm emission and 380 nm excitation, 415 nm emission. Fluorescence microscopy studies show that the Huorescence of eosinophils may be site dependent; specifically, when observed at 365 nm excitation, circulating eosinophil Huorescence appears blue-violet, while the fluorescence of tissue-dwelling eosinophils appears amber-gold. These results should be considered in developing an optical biopsy technique to identify eosinophils in human tissue.  相似文献   

7.
Steady-state and time-resolved fluorescence measurements have been made of human and rabbit lens epithelial cells and their total soluble protein. Excitation at 350 nm results in broad fluorescence spectra peaking at 450 nm and stretching into the visible past 650 nm. The fluorescence excitation spectra peak around 350 nm. We assign the species responsible for this absorption and fluorescence as NADPH. Because the absorption of near-UV light (300-400 nm) is responsible for cell damage and death, we postulate that excited states of NADPH are implicated in the mechanisms of cell damage. Preirradiation with 355 nm light leads to a loss of NADPH fluorescence but with no change in decay kinetics. Possible mechanisms for cell damage are explored.  相似文献   

8.
Clinical studies have shown that in vivo fluorescence spectroscopy can improve the diagnosis of cervical precancer. Recent work suggests that epithelial fluorescence increases, whereas stromal fluorescence decreases, with precancer. However, the microanatomic and biochemical sources of fluorescence in living cervical tissue have not yet been established. This study aims to characterize the origins of living normal and precancerous cervical fluorescence at microscopic levels using laser-scanning fluorescence confocal microscopy. Ten pairs of colposcopically normal and abnormal biopsies were obtained; transverse, 200 microm thick, short-term tissue cultures were prepared and imaged when viable with UV (351-364 nm) and 488 nm excitation before and after addition of the vital dye, Mitotracker Orange. In normal epithelium basal epithelial cells showed cytoplasmic fluorescence; parabasal, intermediate and superficial cells showed fluorescence only at the periphery of the cell. In low-grade precancers cytoplasmic fluorescence was visible in the bottom one-third of the epithelium; in high-grade precancers cytoplasmic fluorescence was visible throughout the lower two-thirds of the epithelium. Cytoplasmic fluorescence was colocalized with the MitoTracker probe and is attributed to mitochondrial reduced form of nicotinamide adenine dinucleotide at UV excitation and mitochondrial flavin adenine dinucleotide at 488 nm excitation. Stromal fluorescence originated from matrix fibers; with the development of precancer the density and fluorescence intensity of matrix fibers decrease. Autofluorescence properties of precancerous cervix reflect an increased number of metabolically active mitochondria in epithelial cells and a reduced stromal fluorescence, which can be an indicator for altered communication between precancerous epithelium and stroma. These changes can explain differences in in vivo fluorescence spectra of normal and precancerous cervical tissue.  相似文献   

9.
Discharged obelin, a complex of coelenteramide and polypeptide, is a fluorescent protein produced from the photoprotein obelin, which is responsible for bioluminescence of the marine hydroid Obelia longissima. Discharged obelin is stable and nontoxic and its spectra are variable, and this is why it can be used as a fluorescent biomarker of variable color in vivo and in vitro. Here we examined light-induced fluorescence of Ca2+-independent discharged obelin (obtained without addition of Ca2+). Its emission and excitation spectra were analyzed under variation of the excitation wavelength (260–390 nm) and the emission wavelength (400–700 nm), as well as the 40 °C exposure time. The emission spectra obtained with excitation at 260–300 nm (tryptophan absorption region) included three peaks with maxima at 355, 498, and 660 nm, corresponding to fluorescence of tryptophan, polypeptide-bound coelenteramide, and a hypothetical indole–coelenteramide exciplex, respectively. The emission spectra obtained with excitation at 310–380 nm (coelenteramide absorption region) did not include the 660-nm maximum. The peak in the red spectral region (λ max?=?660 nm) has not been previously reported. Exposure to 40 °C under excitation at 310–380 nm shifted the obelin fluorescence spectra to the blue, whereas excitation at 260–300 nm shifted them to the red. Hence, red emission and variation of the excitation wavelength form a basis for development of new medical techniques involving obelin as a colored biomarker. The addition of red color to the battery of known (violet to yellow) colors increases the potential of application of obelin.  相似文献   

10.
Abstract— –The presumed photoreceptor for phototaxis, the paraflagellar body, in the flagellate Euglena gracilis , was isolated still attached to the flagellum. After solubilization, fast protein liquid chromatography (FPLC) analysis yielded four major protein fractions with the chromophoric groups still attached. Fluorescence spectra showed that three fractions had excitation peaks at 380 nm and emission peaks around 450 nm indicative of pterins, while the fourth chromoprotein had a fluorescence emission at 520 nm and an excitation peak at 450 nm, indicative of a flavin. The separated proteins were analyzed by gel electrophoresis: the pterin binding proteins have apparent molecular masses between 27 000 and 31 600 and the flavin binding protein has an apparent molecular mass of 33 500.  相似文献   

11.
The total fluorescence of human serum is measured at various excitation and emission wavelengths and presented in topographic form. The main fluorescent species have tentatively been identified by comparison with literature data as tryptophan, NAD(P)H, pyridoxic acid lactone, pyridoxal phosphate Schiff base and protein-bound bilirubin. The effect of pH on the fluorescence of the most prominent components and on the pattern of the map is described. Because both the locations of the peaks and their relative intensities are sensitive to deviations from the normal status of human serum, measurement of total fluorescence spectra is considered to be a potentially useful basis for application of pattern recognition.  相似文献   

12.
溶胶-凝胶法制备掺Sm3+的SiO2玻璃的结构及发光性能   总被引:1,自引:0,他引:1  
利用溶胶-凝胶技术制备了掺不同量Sm3+和不同退火温度下的SiO2凝胶和玻璃,通过三维荧光光谱、激发光谱、发射光谱的测试,确定了Sm3+在SiO2凝胶玻璃中的最佳激发波长为360 nm,最强发射波长为610 nm,激发光谱的峰位置在360、393、464 nm处,发射光谱的峰位置在578、591、595、610、732nm处,分别归属于4G5/2-6H5/2、4G5/2-6H7/2、4G5/2-6H11/2跃迁,并证明当掺杂量达到1.15%时,Sm3+的发光最强,当Sm3+的掺杂量超过1.15%时,发生浓度猝灭效应.  相似文献   

13.

The fluorescence of pure tryptophan and tryptophan residues in albumin is studied at an excitation wavelength of 288 nm. The range of wavelength registration is 280–380 nm. A broad fluorescence band at 350–355 nm and an elastic scattering line at 288 nm are observed in the spectrum measured at 90° relative to the primary beam. The fluorescence of pure tryptophan and tryptophan in albumin is greatly reduced under the impact of the plasma radiation of a spark discharge, while the elastic scattering peak remains unchanged within the limits of error. A comparison of the elastic scattering and fluorescence indicates that tryptophan loses its inherent property to fluoresce under an external influence. The structure of the other tryptophan levels remains unchanged.

  相似文献   

14.
Fluorescence emission after two-photon excitation at 532 nm by means of a Nd : YAG laser is observed in apohemoglobin, hemoglobin, albumin and tryptophan at room temperature. The experimental results show that the fluorescence of these proteins originates from tryptophan residues. No fluorescence of a biphotonic nature could be detected from lysozyme and tyrosine.  相似文献   

15.
Fluorescence spectroscopy has potential to improve cervical precancer detection. The relationship between tissue biochemistry and fluorescence is poorly understood. The goal of this study was to characterize normal cervical autofluorescence, using fresh tissue short-term tissue cultures and epithelial cell suspensions. Transverse, short-term tissue cultures were prepared from 31 cervical biopsies; autofluorescence images were obtained at 380 and 460 nm excitation. Fluorescence excitation-emission matrices were measured from normal, precancerous and cancerous cervical cell suspensions. Observed fluorescence patterns contrast those reported for frozen-thawed tissue, and were placed into groups with (1) bright epithelial and weak stromal fluorescence; (2) similar epithelial and stromal fluorescence; and (3) weak epithelial and bright stromal fluorescence. The average ages of women in the groups were 30.9, 38.0 and 49.2 years. Epithelial fluorescence intensity was similar in Groups 1 and 2, but weaker in Group 3. Stromal intensity was similar in Groups 2 and 3, but weaker in Group 1. The ratio of epithelial to stromal fluorescence intensity was significantly different for all groups. EEMs of cell suspensions showed peaks consistent with tryptophan, reduced form of nicotinamide adenine dinucleotide (phosphate) and flavin adenine dinucleotide. Short-term tissue cultures represent a novel, biologically appropriate model to understand cervical autofluorescence. Our results suggest a biological basis for the increased fluorescence seen in older, postmenopausal women.  相似文献   

16.
AzoR is a homodimeric,flavin mononucleotide(FMN)-containing,NADH-dependent azoreductase from Escherichia coli.In this paper,we investigated the effect of the concentration of both AzoR and R59 G on the spectral behavior of the bound FMN using two-dimensional fluorescence correlation spectra.Two cross peaks(530,490) and(580,530) were observed from the dilution-induced 2D asynchronous correlation map of wt AzoR,while only one cross peak appeared at(600,530) for R59 C mutant.This result indicated that the mutation at site 59 influenced the formation of dilution-induced intermediates.The specific activity of both AzoR and R59 G mutant was unaffected by dilution when the enzyme concentration is below 1 μmol/L,which suggested that no significant dissociation of FMN occurred at low concentrations.Additionally,in order to explore the origin of these intermediates,we carried out a2 D correlation analysis using excitation wavelength-dependent fluorescence emission spectroscopy.The results showed that there coexisted two types of FMN that emitted fluorescence at 530 nm and 500 nm,respectively.Taken together,these results suggested that the 2D method is a very powerful method to identify the heterogeneous distribution of the bound FMN in solution.  相似文献   

17.
3-Hydroxyflavone (3HF), a molecule that exhibits excited-state intramolecular proton transfer, has been studied for its fluorescence characteristics in dimyristoylphosphatidylcholine (DMPC) liposome membrane. 3HF partitions to the lipid bilayer membrane with a reasonably large partition coefficient. On excitation at 417 nm, a weak emission from the ground-state anion species was observed at 483 nm, whereas excitation at absorption maxima (345 nm) gives the usual intense fluorescence of the phototautomeric emission at 530 nm. In this article, we report the observation of a ground-state proton transfer reaction of 3HF in DMPC liposome membrane.  相似文献   

18.
Under excitation at 365 nm, the cell fluorescence is mainly due to bound and free NAD(P)H, plus a small contribution from flavins. Resolution is first attempted in the simplest case. i.e. the increase spectrum (δIf) due to microinjection of glucose-6-phosphate (G6P) into EL2 ascites cells. Above 510 nm, δIF is identical to the spectrum of free NADH. Below 510 nm. the presence of a second component is suggested, i.e. the intensity of the free NADH spectrum is lower than the measured δIF level. The difference between δIf and the free NADH spectrum (maximum at 475 nm) yields a spectrum suggestive of bound NADH with maximum at 450 nm. Thus, with free and bound NADH, the entire δIF can be reconstructed, with some assumptions as to the relative quantum yields of the two components. This seems to leave no place for a flavin component. The questions raised by the lack of such a component are answered using a new microspectrofluorometer, which aiiows correlated monitoring of NAD(P)H and flavins with excitations at 365 and 436 nm, respectively. As detected by excitation at 436 nm, injections of G6P, malate, ADP, and treatments with azide, cyanide or partial anaerobiosis, all indeed show a redox change of flavins, in the sense of decreased emission. It is understandable, however, that such a change which is not very large even using 436 nm excitation should remain undetected when flavins are excited at 365 nm, i.e. using the tail of their excitation spectrum. In contrast to the increased δIF spectrum recorded in response to injected substrate, the initial spectrum (If) of the cell prior to a metabolic perturbation reveals a third component, even with 365 nm excitation. The position and reactivity of this component shows flavin-like properties. The structural resolution attainable makes it possible to obtain the evaluation of free vs. bound NAD(P)H and flavin fluorochromes in the mitochondrial and cytosolic compartments of the intact cell.  相似文献   

19.
Picosecond time-correlated single-photon counting was used to measure the proton-transfer rate of green fluorescent protein (GFP) excited by several wavelengths between 266 and 405 nm. When samples of GFP in water and D2O are excited at short wavelengths, lambda(ex) < 295 nm, the fluorescence properties are largely modified with respect to excitation at a wavelength around 400 nm, the peak of the absorption band of the S0 --> S1 transition of the ROH form of the chromophore. The shorter the excitation wavelength, the longer the decay time of the ROH emission band at 450 nm and the longer the rise time of the RO- emission band at 512 nm. The proton transfer is slower by an order of magnitude and about a factor of 3 when GFP in water and D2O are excited by 266 nm, respectively.  相似文献   

20.
Abstract— Besides the normal tryptophan (Trp) fluorescence in aqueous solution (emission maximum at 350 nm), a new emission, peaking around 380 nm, appears by long wavelength excitation. Its fluorescence yield (φs 0.24) is higher than that of tryptophan (φTrp= 0.13). The growth of this emission is observed under different experimental conditions, mainly under UV anaerobic irradiation. To explain this observation, the formation of a C3-hydroxylated derivative is tentatively suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号