首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of thermal fluctuations on the dynamics of interfacial electron transfer in sensitized TiO2-anatase semiconductors is investigated by combining ab initio DFT molecular dynamics simulations and quantum dynamics propagation of transient electronic excitations. It is shown that thermal nuclear fluctuations speed up the underlying interfacial electron transfer dynamics by introducing nonadiabatic transitions between electron acceptor states, localized in the vicinity of the photoexcited adsorbate, and delocalized states extended throughout the semiconductor material, creating additional relaxation pathways for carrier diffusion. Furthermore, it is shown that room-temperature thermal fluctuations reduce the anisotropic character of charge diffusion along different directions in the anatase crystal and make similar the rates for electron injection from adsorbate states of different character. The reported results are particularly relevant to the understanding of temperature effects on surface charge separation mechanisms in molecular-based photo-optic devices.  相似文献   

2.
Functionalization of semiconductor nanocrystals can be achieved by anchoring organic ligands to the surface dangling bonds. The resulting surface complexes often introduce electronic states in the semiconductor band gap. These interband states sensitize the host material for photoabsorption at frequencies characteristic of the molecular adsorbates, leading to the well-known process of photoexcitation and subsequent femtosecond interfacial electron transfer. This paper investigates the relaxation dynamics of hole states, energetically localized deep in the semiconductor band gap, after the ultrafast electron-hole pair separation due to interfacial electron transfer. Mixed quantum-classical methods, based on mean-field nuclear dynamics approximated by ab initio density functional theory molecular dynamics simulations, reveal superexchange hole tunneling between adjacent adsorbate molecules in a model study of functionalized TiO2-anatase nanostructures. It is shown that electronic coherences can persist for hundreds of picoseconds under cryogenic and vacuum conditions, despite the partial intrinsic decoherence induced by thermal ionic motion, providing results of broad theoretical and experimental interest.  相似文献   

3.
We have synthesized a new photoactive rhenium(i)-complex having a pendant catechol functionality [Re(CO)(3)Cl(L)] (1) (L is 4-[2-(4'-methyl-2,2'-bipyridinyl-4-yl)vinyl]benzene-1,2-diol) for studying the dynamics of the interfacial electron transfer between nanoparticulate TiO(2) and the photoexcited states of this Re(i)-complex using femtosecond transient absorption spectroscopy. Our steady state absorption studies revealed that complex 1 can bind strongly to TiO(2) surfaces through the catechol functionality with the formation of a charge transfer (CT) complex, which has been confirmed by the appearance of a new red-shifted CT band. The longer wavelength absorption band for 1, bound to TiO(2) through the proposed catecholate functionality, could also be explained based on the DFT calculations. Dynamics of the interfacial electron transfer between 1 and TiO(2) nanoparticles was investigated by studying kinetics at various wavelengths in the visible and near infrared regions. Electron injection into the conduction band of the nanoparticulate TiO(2) was confirmed by detection of the conduction band electron in TiO(2) ([e(-)](TiO(2)(CB))) and the cation radical of the adsorbed dye (1˙(+)) in real time as monitored by transient absorption spectroscopy. A single exponential and pulse-width limited (<100 fs) electron injection was observed. Back electron transfer dynamics was determined by monitoring the decay kinetics of 1˙(+) and .  相似文献   

4.
5.
Dynamics of interfacial electron transfer (ET) in the ruthenium-polypyridyl complex [{bis(2,2'-bpy)-(4-[2-(4'-methyl-2,2'-bipyridinyl-4-yl)vinyl]benzene-1,2-diol)} ruthenium(II) hexafluorophosphate] (Ru-cat)-sensitized TiO(2) nanoparticles has been investigated using femtosecond transient absorption spectroscopy detecting in the visible and near-infrared region. It has been observed that Ru-cat is coupled strongly with the TiO(2) nanoparticles through its pendant catechol moiety. Electron injection has been confirmed by direct detection of electrons in the conduction band, cation radical of the adsorbed dye, and a bleach of the dye in real time as monitored by transient absorption spectroscopy. A single-exponential and pulse width limited (<100 fs) electron injection has been observed, and the origin of it might have been from the nonthermalized excited states of the Ru-cat molecule. The result gave a strong indication that the electron injection competes with the thermalization of the photoexcited states due to large coupling elements for the forward ET reaction. Back-ET dynamics has been determined by monitoring the decay kinetics of the cation radical and injected electron and also from recovery kinetics of the bleach of the adsorbed dye. It has been fit with a multiexponential function, where approximately 30% of the injected electrons are recombined with a time constant of <2 ps, again indicating large coupling elements for the charge recombination reaction. However, our results have shown relatively long-lived charge separation in the Ru-cat/TiO(2) system as compared to other organic dye-sensitized TiO(2) nanoparticles with similar interactions.  相似文献   

6.
Electron-hole excitation and relaxation in the bulk, at interfaces, and surfaces of solid state materials play a key role in a variety of physical and chemical phenomena that are important for surface photochemistry, particle-surface interactions, and device physics. Information on charge carrier relaxation in metals can be obtained through analysis of linewidths measured by photoemission and related techniques, which give an estimate of the upper limit for electron and hole relaxation; however, many factors can contribute to spectral broadening, thus it is difficult to extract specific information on electronic relaxation processes. With femtosecond lasers it is possible to probe directly in a time-resolved fashion the charge carrier dynamics in metals by a variety of linear and nonlinear optical techniques. Femtosecond time-resolved two-photon photoemission has attracted particularly strong interest because it incorporates many of the surface analytical capabilities of photoemission and inverse photoemission — the traditional probes for surface and bulk band structures of solid state materials — with time-resolution that is approaching the fundamental response of electrons to optical excitation. Advances in the direct measurements of electron-hole excitation, charge carrier relaxation, and dynamics of intrinsic and adsorbate induced surface states are reviewed. With femtosecond lasers it also is possible to probe a variety of coherent phenomena, and even to control the charge carrier dynamics in metals through the optical phase of the excitation light. Pioneering experiments in this new field also are discussed.  相似文献   

7.
Interfacial electron transfer (ET) in TiO?-based systems is important in artificial solar energy harvesting systems, catalysis, and in advanced oxidative waste water treatment. The fundamental importance of ET processes and impending applications make the study of interfacial ET a promising research area. Photoexcitation of dye molecules adsorbed on the surface of wide band gap semiconductors, such as TiO?, results in the injection of electrons from the dye molecules to the conduction band of the semiconductor or energetically accessible surface electronic states. Using Raman spectroscopy and ensemble-averaging approaches,t he chemical bonding and vibrational relaxation of the ET processes have been extensively studied. However, due to the complexity of the interfacial ET energetics and dynamics, significant questions remain on characterizing the source of the observed complexities. To address these important issues, we have applied advanced spectroscopic and imaging techniques such as confocal and tip-enhanced near-field Raman as well as photoluminescence spectroscopic and topographic imaging. Here we explore single surface states on TiO? as well as the interfacial electronic coupling of alizarin to TiO? single crystalline surfaces.  相似文献   

8.
Photoinduced interfacial electron transfer (ET) from molecular adsorbates to semiconductor nanoparticles has been a subject of intense recent interest. Unlike intramolecular ET, the existence of a quasicontinuum of electronic states in the solid leads to a dependence of ET rate on the density of accepting states in the semiconductor, which varies with the position of the adsorbate excited-state oxidation potential relative to the conduction band edge. For metal oxide semiconductors, their conduction band edge position varies with the pH of the solution, leading to pH-dependent interfacial ET rates in these materials. In this work we examine this dependence in Re(L(P))(CO)3Cl (or ReC1P) [L(P) = 2,2'-bipyridine-4,4'-bis-CH2PO(OH)2] and Re(L(A))(CO)3Cl (or ReC1A) [L(A) = 2,2'-bipyridine-4,4'-bis-CH2COOH] sensitized TiO2 and ReC1P sensitized SnO2 nanocrystalline thin films using femtosecond transient IR spectroscopy. ET rates are measured as a function of pH by monitoring the CO stretching modes of the adsorbates and mid-IR absorption of the injected electrons. The injection rate to TiO2 was found to decrease by 1000-fold from pH 0-9, while it reduced by only a factor of a few to SnO2 over a similar pH range. Comparison with the theoretical predictions based on Marcus' theory of nonadiabatic interfacial ET suggests that the observed pH-dependent ET rate can be qualitatively accounted for by considering the change of density of electron-accepting states caused by the pH-dependent conduction band edge position.  相似文献   

9.
Interfacial electron transfer (ET) dynamics of 5,10,15-trisphenyl-20-(3,4-dihydroxybenzene) porphyrin (TPP-cat) adsorbed on TiO2 nanoparticles has been studied by femtosecond transient absorption spectroscopy in the visible and near-IR region exciting at 400 and 800 nm. TPP-cat molecule forms a charge transfer (CT) complex with TiO2 nanoparticles through the catechol moiety with the formation of a five-membered ring. Optical absorption measurements have shown that the Q-band of TPP-cat interacts strongly with TiO2 due to chelation; however, the Soret band is affected very little. Optical absorption measurements indicate that the catechol moiety also interacts with TiO2 nanoparticles showing the characteristic band of pure catechol-TiO2 charge transfer (CT) in the visible region. Electron injection has been confirmed by monitoring the cation radical, instant bleach, and injected electron in the conduction band of TiO2 nanoparticles. Electron injection time has been measured to be < 100 fs and recombination kinetics has been best fitted with a multiexponential function, where the majority of the injected electrons come back to the parent cation radical with a time constant of approximately 800 fs for both excitation wavelengths. However, the reaction channel for the electron injection process has been found to be different for both wavelengths. Excitation at 800 nm, found to populate the CT state of the Q-band, and from the photoexcited CT state electron injection into the conduction band, takes place through diffusion. On the other hand, with excitation at 400 nm, a complicated reaction channel takes place. Excitation with 400 nm light excites both the CT band of Cat-TiO2 and also the Soret band of TPP-cat. We have discussed the reaction path in the TPP-cat/TiO2 system after exciting with both 400 and 800 nm laser light. We have also compared ET dynamics by exciting at both wavelengths.  相似文献   

10.
Photoinduced electron transfer between a carotenoid and TiO2 nanoparticle   总被引:1,自引:0,他引:1  
The dynamics of photoinduced electron injection and recombination between all-trans-8'-apo-beta-caroten-8'-oic acid (ACOA) and a TiO(2) colloidal nanoparticle have been studied by means of transient absorption spectroscopy. We observed an ultrafast ( approximately 360 fs) electron injection from the initially excited S(2) state of ACOA into the TiO(2) conduction band with a quantum yield of approximately 40%. As a result, the ACOA(*)(+) radical cation was formed, as demonstrated by its intense absorption band centered at 840 nm. Because of the competing S(2)-S(1) internal conversion, approximately 60% of the S(2)-state population relaxes to the S(1) state. Although the S(1) state is thermodynamically favorable to donate electrons to the TiO(2), no evidence was found for electron injection from the ACOA S(1) state, most likely as a result of a complicated electronic nature of the S(1) state, which decays with a approximately 18 ps time constant to the ground state. The charge recombination between the injected electrons and the ACOA(*)(+) was found to be a highly nonexponential process extending from picoseconds to microseconds. Besides the usual pathway of charge recombination forming the ACOA ground state, about half of the ACOA(*)(+) recombines via the ACOA triplet state, which was monitored by its absorption band at 530 nm. This second channel of recombination proceeds on the nanosecond time scale, and the formed triplet state decays to the ground state with a lifetime of approximately 7.3 micros. By examination of the process of photoinduced electron transfer in a carotenoid-semiconductor system, the results provide an insight into the photophysical properties of carotenoids, as well as evidence that the interfacial electron injection occurs from the initially populated excited state prior to electronic and nuclear relaxation of the carotenoid molecule.  相似文献   

11.
12.
We report on the ultrafast photoinduced charge separation processes in varying compositions of poly(3-hexylthiophene) (P3HT) blended with the electron acceptor [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). Through the use of time-resolved terahertz spectroscopy, the time- and frequency-dependent complex photoconductivity is measured for samples with PCBM weight fractions (WPCBM) of 0, 0.2, 0.5, and 0.8. By analysis of the frequency-dependent complex conductivity, both the charge carrier yield and the average charge carrier mobility have been determined analytically and indicate a short (<0.2 nm) carrier mean free path and a suppressed long-range transport that is characteristic of carrier localization. Studies on pure films of P3HT demonstrate that charge carrier generation is an intrinsic feature of the polymer that occurs on the time scale of the excitation light, and this is attributed to the dissociation of bound polaron pairs that reside on adjacent polymer chains due to interchain charge transfer. Both interchain and interfacial charge transfer contribute to the measured photoconductivity from the blended samples; interfacial charge transfer increases as a function of increasing PCBM. The addition of PCBM to the polymer films surprisingly does not dramatically increase the production of charge carriers within the first 2 ps. However, charge carriers in the 0.2 and 0.5 blended films survive to much longer times than those in the P3HT and 0.8 films.  相似文献   

13.
Fe3+/V5+/TiO2复合纳米微粒光催化性能的研究   总被引:29,自引:1,他引:29  
采用溶胶凝胶法制备了Fe^3 /V^5 /TiO2复合纳米微粒作为光催化剂。光降解反应结果表明,其掺杂催化剂Fe^3 /V^5 /TiO2的光催化活性明显提高。光电化学研究显示,铁离子可以成为电荷陷阱,促进空穴的界面传递反应。适量钒离子掺杂使TiO2电极的光电流升高,导带中电子浓度的增大,加快了界面的电子传递反应。共掺杂催化剂中,Fe^3 、V^5 分别提供了空穴与电子的陷阱,同时加快了电子与空穴的界面传递反应,从 更有效地提高光催化活性。双组份共掺杂为提高TiO2光催化活性提供新的途径。  相似文献   

14.
The geometries, electronic structures and the electronic absorption spectra of three kinds of ruthenium complexes, which contain tridentate bipyridine-pyrazolate ancillary ligands, were studied using density functional theory (DFT) and time-dependent DFT. The calculated results indicate that: (1) the strong conjugated effects are formed across the pyrazoalte-bipyridine groups; (2) the interfacial electron transfer between electrode and the dye sensitizers is an electron injection processes from the excited dyes to the conduction band of TiO2; (3) the absorption bands in visible region have a mixed character of metal-to-ligand charge transfer and ligand-to-ligand charge transfer, but the main character of absorption bands near UV region ascribe to π→π* transitions; (4) introducing pyrazolate and -NCS groups are favorable for intra-molecular charge transfer, and they are main chromophores that contribute to the sensitization of photon-to-current conversion processes, but introducing -Cl and the terminal group -CF3 are unfavorable to improve the dye performance in dye sensitized solar cells.  相似文献   

15.
The excited-state relaxation dynamics of a synthetic porphyrin, ZnCAPEBPP, in solution, coated on a glass substrate as solid films, mixed with PMMA and coated on a glass substrate as solid films, and sensitized on nanocrystalline TiO2 films were investigated by using femtosecond fluorescence up-conversion spectroscopy with excitation in the Soret band, S2. We found that the S2--> S1 electronic relaxation of ZnCAPEBPP in solution and on PMMA films occurs in 910 and 690 fs, respectively, but it becomes extremely rapid, <100 fs, in solid films and TiO2 films due to formation of porphyrin aggregates. When probed in the S1 state of porphyrin, the fluorescence transients of the solid films show a biphasic kinetic feature with the rapid and slow components decaying in 1.9-2.4 and 19-26 ps, respectively. The transients in ZnCAPEBPP/TiO2 films also feature two relaxation processes but they occur on different time scales, 100-300 fs and 0.8-4.1 ps, and contain a small offset. According to the variation of relaxation period as a function of molecular density on a TiO2 surface, we assigned the femtosecond component of the TiO2 films as due to indirect interfacial electron transfer through a phenylethynyl bridge attached to one of four meso positions of the porphyrin ring, and the picosecond component arising from intermolecular energy transfer among porphyrins. The observed variation of aggregate-induced relaxation periods between solid and TiO2 films is due mainly to aggregation of two types: J-type aggregation is dominant in the former case whereas H-type aggregation prevails in the latter case.  相似文献   

16.
Density functional theory (DFT) in connection with ultrasoft pseudopotential (USP) and generalized gradient spin-polarized approximations (GGSA) is applied to calculate the adsorption energies and structures of monolayer-adsorbed InN on the TiO(2) anatase (101) surface and the corresponding electronic properties, that is, partial density of states (PDOS) for surface and bulk layers of the TiO(2) anatase (101) surface and monolayer-adsorbed InN, to shed light on the possible structural modes for initial photoexcitation within the UV/vis adsorption region followed by fast electron injection through the InN/TiO(2) interface for an InN/TiO(2)-based solar cell design. Our calculated adsorption energies found that the two most probable stable structural modes of monolayer-adsorbed InN on the TiO(2) anatase (101) surface are (1) an end-on structure with an adsorption energy of 2.52 eV through N binding to surface 2-fold coordinated O (O(cn2)), that is, InN-O(cn2), and (2) a side-on structure with an adsorption energy of 3.05 eV through both N binding to surface 5-fold coordinated Ti (Ti(cn5)) and In bridging two surface O(cn2), that is, (O(cn2))(2)-InN-Ti(cn5). Our calculated band gaps for both InN-O(cn2) and (O(cn2))2-InN-Ti(cn5) (including a 1.0-eV correction using a scissor operator) of monolayer-adsorbed InN on the TiO(2) anatase (101) surface are red-shifted to 1.7 eV (730 nm) and 2.3 eV (540 nm), respectively, which are within the UV/vis adsorption region similar to Gratzel's black dye solar cell. Our analyses of calculated PDOS for both surface and bulk layers of the TiO(2) anatase (101) surface and monolayer-adsorbed InN on the TiO(2) anatase (101) surface suggest that the (O(cn2))(2)-InN-Ti(n5) configuration of monolayer-adsorbed InN on the TiO(2) anatase (101) surface would provide a more feasible structural mode for the electron injection through the InN/TiO(2) interface. This is due to the presence of both occupied and unoccupied electronic states for monolayer-adsorbed InN within the band gap TiO(2) anatase (101) surface, which will allow the photoexcitation within the UV/vis adsorption region to take place effectively, and subsequently the photoexcited electronic states will overlap with the unoccupied electronic states around the lowest conduction band of the TiO(2) anatase (101) surface, which will ensure the electron injection through the InN/TiO(2) interface. Finally, another thing worth our attention is our preliminary study of double-layer-adsorbed InN on the TiO(2) anatase (101) surface, that is, (O(cn2))(2)-(InN)(2)-Ti(cn5), with a calculated band gap red-shifted to 2.6 eV (477 nm) and a different overlap of electronic states between double-layer-adsorbed InN and the TiO(2) anatase (101) surface qualitatively indicated that there is an effect of the thickness of adsorbed InN on the TiO(2) anatase (101) surface on both photoexcitation and electron injection processes involved in the photoinduced interfacial electron transfer through InN/TiO(2). A more thorough and comprehensive study of different layers of InN adsorbed in all possible different orientations on the TiO(2) anatase (101) surface is presently in progress.  相似文献   

17.
The dependence of the interfacial electron transfer in alizarin-sensitized TiO2 nanoparticles on the sample pH has been examined via transient absorbance spectroscopy in the visible spectral region (443-763 nm). Excitation of the alizarin/TiO2 system with visible pump pulses (lambdaexc = 500 nm) leads to a very fast electron injection (tauinj < 100 fs) over a wide pH range. Back electron transfer shows complicated multiphasic kinetics and strongly depends on the acidity of the solution. The strong dependence of back-electron-transfer dynamics on the ambient pH value is explained by a Nernstian-type change in the semiconductor band energy. Indeed, a variation of pH values over 7 units leads to a approximately 0.42 eV change of the conduction band edge position (i.e., the nominal free energy of the electron in the electrode). Assuming a pH-independent redox potential of the dye, this change was sufficient to push the system to a condition where direct photoinitiated electron injection to intraband gap surface states could be investigated. The existence of an electron-transfer pathway via surface trap states is supported by the similarity of the observed back-electron-transfer kinetics of alizarin/TiO2 at pH 9 and alizarin/ZrO2 reported in earlier work (J. Phys. Chem. B 2000, 104, 8995), where the conduction band edge is approximately 1 eV above the excited state of the dye. The influence of surface trap states on interfacial electron transfer has been studied, and a detailed analysis of their population, depopulation, and relaxation kinetics is performed. Therefore, alizarin adsorbed on the surface of TiO2 nanoparticles is an ideally suited system, where pH-dependent investigations allow a detailed study of the electron dynamics in trap states of TiO2 nanoparticles.  相似文献   

18.
Effect of Ti(iso-C3H7O)4 treatment on the photoinduced charge carrier kinetics of nanocrystalline porous TiO2 films is studied by time-resolved microwave conductivity measurements. Analysis of the transient photoconductivity decays indicates that Ti(iso-C3H7O)4 treatment leads to an increased concentration of photogenerated charge carriers and a fast interfacial transfer rate of holes via the surface modification of the fleshly growing TiO2 nanocrystallites.  相似文献   

19.
As the host possessing the largest cavity in the cucurbit[n]uril (CB[n]) family, CB[10] has previously displayed unusual recognition and assembly properties with guests but much remains to be explored. Herein, we present the recognition properties of CB[10] toward a series of bipyridinium guests including the tetracationic cyclophane known as blue box along with electron‐rich guests and detail the influence of encapsulation on the charge‐transfer interactions between guests. For the mono‐bipyridinium guest (methylviologen, MV 2+), CB[10] not only forms 1:1 and 1:2 inclusion complexes, but also enhances the charge‐transfer interactions between methylviologen and dihydroxynaphthalene ( HN ) by mainly forming the 1:2:1 packed “sandwich” complex (CB[10] ? 2 MV 2+ ?HN ). For guest 1 with two bipyridinium units, an interesting conformational switching from linear to “U” shape is observed by adding catechol to the solution of CB[10] and the guest. For the tetracationic cyclophane‐blue box, CB[10] forms a stable 1:1 inclusion complex; the two bipyridinium units tilt inside the cavity of CB[10] according to the X‐ray crystal structure. Finally, a supramolecular “Russian doll” was built up by threading a guest through the cavities of both blue box and CB[10].  相似文献   

20.
The electron transfer dynamics of oligo(p-phenylene-ethynylene) (OPE) SAM on Au(111) was studied by resonant photoemission spectroscopy. The ultrafast electron transfer from OPE molecules to Au substrate was clearly observed. The time scale for this charge transfer is much less than 6 fs, the core-hole lifetime for C 1s. This strongly suggests that there is an intense interfacial electronic coupling between OPE molecules and the Au substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号