首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adsorption of acetonitrile and its surface reactions with oxygen on TiO2-supported Au — Rh bimetallic catalysts were studied by FTIR and mass spectrometry at 300–673 K. The band due to CH3CN on Lewis acid centres shifted to lower wavenumbers with the increase of the Rh content, which shows that the strength of Lewis acid sites weakens with the increase of the Rh content of the catalysts. CH3CN, on the other hand, dissociates producing CN(a) species. From the shift to higher wavenumbers of the band due to CN(a), strengthening of the C — N bond with increasing Rh content has been established. During the heat treatments of the adsorbed CH3CN layer, methylamine (CH3NH2) was detected in the gas phase, the amount of which depended on the composition of the catalysts. Dehydrogenation of the adsorbed acetonitrile also depends on the Rh content: the higher the Rh content of the sample, the lower the temperature of the first appearance of gaseous H2, and the higher the amount of H2 evolved. The presence of gaseous oxygen affects the formation of isocyanate (NCO) surface species only on 1% Au/TiO2 and on 1% (0.75Au–0.25Rh)/TiO2 catalysts.  相似文献   

2.
A novel metal‐doping strategy was developed for the construction of iron‐decorated microporous aromatic polymers with high small‐gas‐uptake capacities. Cost‐effective ferrocene‐functionalized microporous aromatic polymers (FMAPs) were constructed by a one‐step Friedel–Crafts reaction of ferrocene and s‐triazine monomers. The introduction of ferrocene endows the microporous polymers with a regular and homogenous dispersion of iron, which avoids the slow reunion that is usually encountered in previously reported metal‐doping procedures, permitting a strong interaction between the porous solid and guest gases. Compared to ferrocene‐free analogues, FMAP‐1, which has a moderate BET surface area, shows good gas‐adsorption capabilities for H2 (1.75 wt % at 77 K/1.0 bar), CH4 (5.5 wt % at 298 K/25.0 bar), and CO2 (16.9 wt % at 273 K/1.0 bar), as well as a remarkably high ideal adsorbed solution theory CO2/N2 selectivity (107 v/v at 273 K/(0–1.0) bar), and high isosteric heats of adsorption of H2 (16.9 kJ mol?1) and CO2 (41.6 kJ mol?1).  相似文献   

3.
Measurements are reported of the surface-enhanced Raman of 12CN and 13CN (and of isotopically labelled mixtures) adsorbed at silver electrodes. The spectra are shown to arise from a complex species whose coordination number does not change with electrode potential. This species is probably a [Ag(CN2)]? entity having C2v symmetry; at very negative potentials a reduced form of this complex [Ag(CN)2]2? coexists with the formally Ag1 species at the surface. The shifts in band position are interpreted in terms of changes in the bond character of the adsorbed CN? species. The spectrum of water coadsorbed with CN? is also markedly dependent on the charge density of the adsorbed CN? groups.  相似文献   

4.
The dependences of the differential molar isosteric heat of adsorption and entropy of adsorption of CO2 on zeolite NaX were determined in wide temperature (196–423 K) and pressure (0.1 Pa to 5.4 MPa) intervals. In the initial region of adsorption (a < 1 mmol g–1), the differential molar heat of adsorption increases from 40 to 43 kJ mol–1 and then decreases to 33 kJ mol–1. The heat of adsorption remains virtually unchanged at 3 mmol g–1< a < 6.5 mmol g–1 and decreases sharply at high fillings of zeolite micropores (a > 7 mmol g–1). The heat of adsorption was found to be temperature-dependent. The region with the constant heats shrinks with the temperature increase, and the heats begin to decrease at lower fillings of micro pores. The dependences of the change in the differential entropy of the adsorption system on the amount adsorbed were calculated at different temperatures. The specific features of the behavior of the thermodynamic functions of this adsorption system in the initial and medium region of fillings kre associated with interactions of adsorbate molecules with Na+ cations and walls of large cavities. For high fillings, an increase in repulsion forces between adsorbed molecules results in a sharp expansion of the adsorbent and a decrease in the heat of adsorption.Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1570–1573, August, 2004.  相似文献   

5.
Adsorption of n-pentane, triethylamine, diethyl ether, acetonitrile and chloroform has been investigated on pyrogenic alumina (S=140 m2 g−1). The results of our studies have shown the presence of active sites on the surface of pyrogenic alumina with irreversible adsorption of electron-donating molecules and CHCl3 and the dependence of energetic surface properties on electronic structure of adsorbate, quantity of adsorbed substance and hydration degree of the surface. On the hydrated oxide surface the water molecules screen the active sites of the surface, which resulted in changing of interaction energy of adsorbent-adsorbate and decreasing the region of irreversible adsorption of organic bases and CH-acid. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.

Hydrogen adsorption properties of the CN3Be3+ cluster have been studied using density functional theory and MP2 method with a 6–31++G** basis set. Five hydrogen molecules get adsorbed on the CN3Be3+ cluster with a hydrogen storage capacity of 10.98 wt%. Adsorption of three H2 molecules on one of the three Be atoms in a cluster is reported for the first time. It is due to the more positive charge on this Be atom than the remaining two. The average value for H2 adsorption energy in CN3Be3+ (5H2) complexes is 0.41 (0.43) eV/H2 at MP2 (wB97XD) level, which fits well within the ideal range. Adsorption energy from electronic structure calculations plays an important role in retaining the number of H2 molecules on a cluster during atom-centered density matrix propagation (ADMP) molecular dynamics (MD) simulations. According to ADMP-MD simulations, out of five H2 adsorbed molecules on CN3Be3+, four and two H2 molecules remain absorbed on CN3Be3+ cluster at 275 K and 350 K, respectively, during the simulation.

  相似文献   

7.
The linear regions of the adsorption isotherms of freon 13B1 (CF3Br) on active carbons with different porous structures were studied by gas chromatography at 343–573 K. The Henry's constants were determined, and the isosteric heats of adsorption (Q) were calculated in the region of zero filling. It was established that theQ values for active carbons with different pore size distributions are almost the same and vary within 38–41 kJ mol–1. This coincidence can be explained assuming that the interaction between the adsorbed molecules and the active carbons occurs in the pores whose sizes are comparable with those of the adsorbed molecules.For part 1, see Ref. 1.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 439–441, March, 1995.  相似文献   

8.
Combined measurements of piezoelectric quartz crystal impedance (PQCI) and electrochemical impedance spectrum (EIS) using a suitable isolation capacitance is reported for the first time to monitor in situ adsorption and acidic denaturation of human serum albumin (HSA) on gold electrodes in Britton-Robinson (B-R) buffers. This method provides simultaneously mutual-interference-free and accurate parameters of EIS and PQCI. Effects of surface thiol-modification, electrode-potential and solution pH on HSA adsorption were examined and discussed. Comparative experiments of HSA adsorption in a B-R buffer of pH 6.42 on bare, cysteine- and 1-dodecanethiol-modified gold electrodes revealed that HSA adsorption is more significant on a hydrophobic (1-dodecanethiol-modified) surface. Insignificant electrode-potential effect implied minor electrostatic effects on HSA adsorption. The adsorption amount of HSA at pH 3.28 was found to be notably greater than those at pH 4.84 and 6.42. To characterize HSA adsorption, electrode standard rate constants (ks) of the Fe(CN)63−/Fe(CN)64− couple were measured before and after HSA adsorption. The ks-pH curves on an HSA-modified Au electrode revealed that ks increased abruptly with the decrease of solution pH below pH ∼4. Moreover, pH-dependent responses of the resonant frequency, the motional resistance, the double-layer capacitance, the capacitance of adsorbed HSA layer and the peak absorbance of HSA solutions at 278 nm all exhibited an inflexion change at pH ∼4, and these findings have been explained on the basis of acidic denaturation of HSA and electrical charges carried by HSA molecules.  相似文献   

9.
The use of perlite for the removal of victoria blue from aqueous solution at different concentration, ionic strength, pH and temperature has been investigated. Adsorption process is attained to the equilibrium within 1 h. It is found that the adsorption capacity of perlite samples for the removal of victoria blue increased by increasing pH and temperature, and decreased by expansion and ionic strength. The adsorption isotherms are described by means of the Langmuir and Freundlich isotherms. The adsorption isotherm was measured experimentally at different conditions, and the experimental data were correlated reasonably well by the adsorption isotherm of the Langmuir, and the isotherm parameters (Q m and K) have been calculated for perlite samples as well. It is concluded that victoria blue is physically adsorbed onto the perlite. The removal efficiency (P) and dimensionless seperation factor (R) have shown that perlite can be used for removal of victoria blue from aqueous solutions, but unexpanded perlite is more effective.  相似文献   

10.
DNA adsorbed very low amount of water at low relative humidities, amount of adsorption increased to 140% at 98% relative humidity at 25°C. Heat of adsorption was 109 kJ mol-1 H2O for the increase of moisture content from 0 to 1.96%. At higher moisture contents the heat released approached heat of condensation of water vapour on free liquid surface, 40 kJ mol-1 H2O.  相似文献   

11.
Adsorption equilibria of nitrogen and methane on microporous ( < 2 nm) activated carbon were measured for a wide temperature range (103‐298 K) spanning the critical region. Information relating to Henry constants, the isosteric heat of adsorption, and the amount of limiting adsorption were evaluated. All isotherms show type‐I features for both sub‐ and supercritical temperatures. A new isotherm equation and a consideration for the importance of the effect of the adsorbed phase volume allow this kind of isotherms to be modeled satisfactorily. The model parameter of the saturated amount of absolute adsorption (n0t) equals the limiting adsorption amount (nitm), leaving the physical meaning of the latter clarified, and the exponent parameter (q) proves to be an appropriate index of surface heterogeneity.  相似文献   

12.
A new porous organic polymer, SNU‐C1 , incorporating two different CO2‐attracting groups, namely, carboxy and triazole groups, has been synthesized. By activating SNU‐C1 with two different methods, vacuum drying and supercritical‐CO2 treatment, the guest‐free phases, SNU‐C1‐va and SNU‐C1‐sca , respectively, were obtained. Brunauer–Emmett–Teller (BET) surface areas of SNU‐C1‐va and SNU‐C1‐sca are 595 and 830 m2g?1, respectively, as estimated by the N2‐adsorption isotherms at 77 K. At 298 K and 1 atm, SNU‐C1‐va and SNU‐C1‐sca show high CO2 uptakes, 2.31 mmol g?1 and 3.14 mmol g?1, respectively, the high level being due to the presence of abundant polar groups (carboxy and triazole) exposed on the pore surfaces. Five separation parameters for flue gas and landfill gas in vacuum‐swing adsorption were calculated from single‐component gas‐sorption isotherms by using the ideal adsorbed solution theory (IAST). The data reveal excellent CO2‐separation abilities of SNU‐C1‐va and SNU‐C1‐sca , namely high CO2‐uptake capacity, high selectivity, and high regenerability. The gas‐cycling experiments for the materials and the water‐treated samples, experiments that involved treating the samples with a CO2‐N2 gas mixture (15:85, v/v) followed by a pure N2 purge, further verified the high regenerability and water stability. The results suggest that these materials have great potential applications in CO2 separation.  相似文献   

13.
We have studied by means of differential microcalorimetry the adsorption process of 1-propanol on α-Al2O3 at the temperatures of 25, 50, 100, 150 and 200°C, respectively. Both amounts of adsorbed alcohol and heats released decrease as the temperature of adsorption increases. At very low coverage, the high value of differential heat shows a strong irreversible chemisorption on active sites (Lewis acid sites) (qdiff>200 kJ·mol?1). Moreover, we carried out some thermokinetic investigations on heat emission peaks at different coverage degree (different equilibrium pressure of 1-propanol vapour as a function of time) and at different temperatures of adsorption, at same coverage.  相似文献   

14.
采用电化学现场表面增强拉曼光谱(SERS)研究了非水体系中苯并三唑(BTAH)在铜电极上的吸附及成膜行为, 结果表明非水体系中BTAH的吸附行为随电位变化而不同. 较负电位区间主要以中性分子形式吸附; 中间电位区间主要以BTA吸附并不可逆成膜; 而在氧化电位区间主要表现为铜的氧化. 随中性配体三苯基膦(pph3)的加入, 在中间电位区间, 由于易溶的Cu(pph3)n+的生成而使铜的溶解速度加快, 最终该阳离子在溶液中和BTA-作用而生成了多核铜的配合物. 采用直接电化学方法模拟电极表面过程合成了相应的吸附产物, 并对其组成进行了相关表征.  相似文献   

15.
The cyanide oxidation on vitreous carbon (VC), stainless steel 304 (SS 304) and titanium (Ti) was investigated through a voltammetric study of cyanide solutions also containing copper ions. Results showed that cyanide oxidation occurs by means of a catalytic mechanism involving adsorbed species as CN, Cu(CN)43– or Cu(CN)42– depending on the electrode material. It was observed that on VC, the adsorption of Cu(CN)43– controlled the oxidation rate. Instead, for SS 304 and Ti, the adsorption of CN controlled the global process. However, in all cases, the adsorption of Cu(CN)43– on the electrode surface was required for the catalytic oxidation of CN. Voltammetric experiments for solutions containing cyanide oxidation products, such as cyanogen (CN)2 and cyanate (CNO), confirmed that the adsorbed species mentioned above controlled the catalytic oxidation of CN depending on the electrode material. A voltammetric identification of the oxidation products showed that cyanogen, (CN)2 tended to adosorb on VC, while the formation of cyanate, CNO predominated on SS 304.  相似文献   

16.
Carbon dioxide adsorption on the microporous carbon adsorbent PAU-10 within the 177.8—423 K temperature and 0.1—5.13·106 Pa pressure intervals was studied. The isosteres of absolute adsorption are well approximated by straight lines, which do not change their slope on going to temperatures higher than the critical temperature of CO2. An increase in the differential molar isosteric heat of adsorption (q st) at 0 < a < 1 mmol g–1 is explained by the influence of the endothermic effect of adsorption expansion of the adsorbent. In the region of high pressures and nonideal gas phase, q st is temperature-dependent.  相似文献   

17.
Adsorption isotherms of carbon dioxide on the microporous ACC carbon adsorbent and the adsorption deformation of the adsorbent were measured. The heats of adsorption at temperatures raising from 243 to 393 K and pressures from 1 to 5⋅106 Pa were measured. In the low-temperature region (243 K), an increase in the amount adsorbed is accompanied by adsorbent contraction, and at high micropore fillings (a > 10 mmol g−1) the ACC carbon adsorbent expands. At high temperatures, adsorbent expansion is observed in the whole region of micropore filling. At 243 K in the low filling region (a < 1 mmol g−1), the heat of adsorption decreases smoothly from 27 to 24 kJ mol−1. The heat of adsorption remains virtually unchanged in the interval 2 mmol g−1 < a < 11 mmol g−1 and then decreases to 8 kJ mol−1 at a = 12 mmol g−1. Taking into account the nonideal character of the gas phase and adsorbent deformation the heats of adsorption are strongly temperature-dependent in a region of high pressures. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1331–1335, June, 2005.  相似文献   

18.
双硫腙包覆钛酸锶钡粉体对水中铅的吸附行为   总被引:9,自引:1,他引:8  
张东  苏会东  高虹  刘家存 《化学学报》2007,65(22):2549-2554
用草酸化学共沉淀法合成了钛酸锶钡(BST)粉体, 以双硫腙为表面修饰剂, 采用静态浸渍法对钛酸锶钡粉体进行表面包覆修饰, 制备出新型固态粉体吸附剂. 利用X射线衍射(XRD)、扫描电镜(SEM)和傅立叶变换红外光谱(FTIR)进行了表征. 研究了该吸附剂对水中铅的吸附行为. 结果表明: 双硫腙通过与钛酸锶钡表面羟基形成氢键作用包覆于该粉体上; 当吸附介质pH值大于4时, 该吸附剂对水中的铅有较强的吸附能力; 室温下, 5 min内吸附达到平衡. 其吸附行为符合Langmuir吸附等温模型和HO准二级动力学方程式, 吸附焓变(ΔH)为19.42 kJ•mol-1, 活化能(Ea)为22.187 kJ•mol-1, 该吸附过程是吸热的物理过程. 吸附在双硫腙包覆钛酸锶钡粉体上的铅, 可用1 mol•L-1的硝酸溶液进行洗脱. 建立了吸附富集、火焰原子吸收法测定水中铅的新方法, 应用于地表水和自来水中铅的测定, 取得了令人满意的结果.  相似文献   

19.
Spectral-kinetic luminescence characteristics of the complexes cis-[Ru(bpy)(dppe)X2], cis- [Ru(bpy)2(PPh3)X](BF4) and cis-[Ru(bpy)2X2] [bpy = 2,2'-bipyridyl, dppe = 1,2-bis(diphenylphosphino)ethane, PPh3 is triphenylphosphine, X = NO2 - and CN-] in the ethanol-methanol 4:1 mixtures and adsorbed on the oxide SiO2 or porous polyacrylonitrile polymer surface were studied. Luminescence and luminescence exitation spectra were registered at 77 and 293 K in 230-750 nm range and the luminescence decay time was measured. Introduction of phosphine ligands to the ruthenium(II) bipyridyl complexes inner sphere leads to rise in singlet and triplet state energy at the charge transfer from Ru(II) to 2,2'-bipyridyl in the series [Ru(bpy)2X2] < Ru(bpy)2(PPh3)X](BF4) < [Ru(bpy)(dppe)X2]. The complex adsorption on SiO2 or polyacrylonitrile surface affects noticeably the luminescence spectro-kinetic characteristics.  相似文献   

20.
The porous nature of chromatographic alumina gel has been investigated by adsorption/condensation processes and electron microscopy. Having 63% porosity, the gel is very porous. Total pore volume as determined by the fluid-displacement method is 0.497 cm3 g–1. Its specific surface area, as determined by water vapor adsorption, is 225 m2 g–1. Micropore volume, as determined by utilizing Gurwitsch's rule, turns out to be 0.262 cm3 g–1. The greater portion of the surface area and pore volume occurs in small and transitional pores, with average pore radii (hydraulic) less than 2.1 nm.Organic vapors, such as methyl ethyl ketone, acetone, methyl acetate, and methyl alcohol, were adsorbed on the gel between 0 and 36°C under vacuum, and the data were recorded on a Cahn-1000 electrobalance device. Isosteric heats of adsorption were calculated by applying the Clausius Clapeyron equation to the adsorption isosters at different surface coverages. Two types of adsorption processes, one with low activation energy and other with high activation energy can be distinguished. The increase in values ofq st indicates that increasing temperature changes physical adsorption into chemisorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号