首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
设计和合成了一种新的基于C_(60)富勒烯部花化合物2,用质谱、核磁共振谱 、红外光谱和紫外光谱对化合物2进行了表征。并对化合物2的变色过程进行了研究 ,发现该化合物对极性溶剂如甲醇、N,N-二甲基甲酰胺和酸或碱如乙酸、乙醇钠等 具有良好的变色过程。但由于部花莆染料受C_(60)的影响,基对光的灵敏度降低, 光致变色过程非常缓慢。  相似文献   

2.
Mixed anhydrides of carbonic acid with phosphonic or carbamic acid, are mimic of relevant biological systems, and behave as key intermediates in trans-esterification processes that afford carbamates of industrial interest. They are formed in the phosphonic acids mediated or direct transesterification reaction of organic carbonates with amines to afford carbamates and have been isolated and characterised in the solid state and solution. Their conversion into the products has been demonstrated to occur with high regioselectivity. The application of such intermediates in some synthetic processes is discussed.  相似文献   

3.
A variety of composites comprising complexes between macromolecules and growing species such as macromolecules or particles may be prepared using matrix or pseudo-matrix processes. Matrix polycondensation of silica acid in the presence of poly(ethylene glycol) and other polymers in benzene resulting in formation of interpolymer complex (IPC) poly(silica acid)-matrix or composites including the IPC is regarded as an example of matrix processes providing the possibility to synthesize an IPC or composite which cannot be (or hardly may be) obtained by other ways: Theoretical aspects of pseudo-matrix processes in which pseudo-matrix macromolecule recognizes (i.e., forms a complex with) a particle of forming new phase and terminates its subsequent growth are discussed. Experimental data dealing with reduction of Ni(II) in polymer solutions and formation of nano-composites ‘polymer - metallic nickel’ including small particles (3–5 nm in diameter) with narrow size distribution are presented.  相似文献   

4.
Concentrated homogeneous mineral acids have been widely used as catalysts in industrial processes for several decades. These catalysts are corrosive to the apparatus, and there are large volumes of chemically reactive waste stream that are difficult to deal with[1]. In order to solve these problems, investigators have replaced these mineral acids with solid acid catalysts. Besides inorganic solid acid catalysts such as zeolite, solid organic polymeric resins containing acid groups, especially sulfuric acid resins such as Amberlyst[2], have attracted much attention. Compared with most inorganic acid catalysts, they have the advantages of their potentially high acidity, controllable surface area and porosity[3]. This article reports a novel sulfonated poly(phthalazinone ether sulfone ketone) (S-PPESK) resin and its application to isobutene oligomerization. S-PPESK exhibits high catalytic activity and excellent dimerization selectivity.  相似文献   

5.
Syntheses and polymerizations of alpha-amino acid N-carboxyanhydrides (NCAs) were reported for the first time by Hermann Leuchs in 1906. Since that time, these cyclic and highly reactive amino acid derivatives were used for stepwise peptide syntheses but mainly for the formation of polypeptides by ring-opening polymerizations. This review summarizes the literature after 1985 and reports on new aspects of the polymerization processes, such as the formation of cyclic polypeptides or novel organometal catalysts. Polypeptides with various architectures, such as diblock, triblock, and multiblock sequences, and star-shaped or dendritic structures are also mentioned. Furthermore, lyotropic and thermotropic liquid-crystalline polypeptides will be discussed and the role of polypeptides as drugs or drug carriers are reviewed. Finally, the hypothetical role of NCAs in molecular evolution on the prebiotic Earth is discussed.  相似文献   

6.
Water soluble graft polymers prepared by copolymerization of either methacrylic acid (MAA) or vinylsulfonic acid (VS) with α‐methoxy‐ω‐methacroyl‐oligo(oxyethylene)s (PEOn‐MA) serve to control nucleation and crystal growth during precipitation of inorganic crystals from aqueous media. Precipitation of zinc oxide crystals (‘zincite’) is used as example for such mineralization processes. Homogeneous and narrow crystal size distributions are obtained in presence of ppm‐amounts of graft copolymers. Copolymer is incorporated into the crystals demonstrated by using latex particles with ‐CO2H‐group rich surfaces as controlling additives. Incorporation of these particles leads to single crystals with pores of the size of the particles (‘Swiss cheese’ morphologies).  相似文献   

7.
We have been designing and synthesizing synthetic polymers that mimic viral fusogenic peptides, which contain peptide residues having alkyl groups and carboxyl groups. We have synthesized two different types of such polymers, and their abilities to hemolyse red blood cells at pH 7.4 and 5.5 are compared here. The polymers are poly(2‐alkylacrylic acid)s such as poly(2‐propylacrylic acid), and random copolymers of poly(alkyl acrylate‐co‐acrylic acid) where the alkyl group is propyl or butyl. We have found that the poly(2‐alkylacrylic acid)s such as poly(2‐propylacrylic acid) are significantly more hemolytic at acidic pH than the random copolymers of equivalent propyl and carboxyl contents.  相似文献   

8.
Atmospheric aerosol particles are important in many atmospheric processes such as: light scattering, light absorption, and cloud formation. Oxidation reactions continuously change the chemical composition of aerosol particles, especially the organic mass component, which is often the dominant fraction. These ageing processes are poorly understood but are known to significantly affect the cloud formation potential of aerosol particles. In this study we investigate the effect of humidity and ozone on the chemical composition of two model organic aerosol systems: oleic acid and arachidonic acid. These two acids are also compared to maleic acid an aerosol system we have previously studied using the same techniques. The role of relative humidity in the oxidation scheme of the three carboxylic acids is very compound specific. Relative humidity was observed to have a major influence on the oxidation scheme of maleic acid and arachidonic acid, whereas no dependence was observed for the oxidation of oleic acid. In both, maleic acid and arachidonic acid, an evaporation of volatile oxidation products could only be observed when the particle was exposed to high relative humidities. The particle phase has a strong effect on the particle processing and the effect of water on the oxidation processes. Oleic acid is liquid under all conditions at room temperature (dry or elevated humidity, pure or oxidized particle). Thus ozone can easily diffuse into the bulk of the particle irrespective of the oxidation conditions. In addition, water does not influence the oxidation reactions of oleic acid particles, which is partly explained by the structure of oxidation intermediates. The low water solubility of oleic acid and its ozonolysis products limits the effect of water. This is very different for maleic and arachidonic acid, which change their phase from liquid to solid upon oxidation or upon changes in humidity. In a solid particle the reactions of ozone and water with the organic particle are restricted to the particle surface and hence different regimes of reactivity are dictated by particle phase. The potential relevance of these three model systems to mimic ambient atmospheric processes is discussed.  相似文献   

9.
Metal-substituted hexaaluminates for high-temperature N2O abatement   总被引:1,自引:0,他引:1  
Metal-substituted hexaaluminates are highly active, selective, stable, and inexpensive catalytic materials for high-temperature N2O abatement in the chemical industry, such as in nitric acid and caprolactam plants, and in combustion processes.  相似文献   

10.
The recycling of metals from electronic waste (e-waste) using efficient, selective, and sustainable processes is integral to circular economy and net-zero aspirations. Herein, we report a new method for the selective precipitation of metals such as gold and copper that offsets the use of organic solvents that are traditionally employed in solvent extraction processes. We show that gold can be selectively precipitated from a mixture of metals in hydrochloric acid solution using triphenylphosphine oxide (TPPO), as the complex [(TPPO)4(H5O2)][AuCl4]. By tuning the acid concentration, controlled precipitation of gold, zinc and iron can be achieved. We also show that copper can be selectively precipitated using 2,3-pyrazinedicarboxylic acid (2,3-PDCA), as the complex [Cu(2,3-PDCA-H)2]n ⋅ 2n(H2O). The combination of these two precipitation methods resulted in the recovery of 99.5 % of the Au and 98.5 % of the Cu present in the connector pins of an end-of-life computer processing unit. The selectivity of these precipitation processes, combined with their straightforward operation and the ability to recycle and reuse the precipitants, suggests potential industrial uses in the purification of gold and copper from e-waste.  相似文献   

11.
We report quenching and chemical degradation of polymer-coated quantum dots by reactive oxygen species (ROS), a group of oxygen-containing molecules that are produced by cellular metabolism and are involved in both normal physiological and disease processes such as oxidative signaling, cancer, and atherosclerosis. A major new finding is that hypochlorous acid (HOCl) in its neutral form is especially potent in degrading encapsulated QDs, due to its small size, neutral charge, long half-life, and fast reaction kinetics under physiologic conditions. Thus, small and neutral molecules such as HOCl and hydrogen peroxide (H2O2) are believed to diffuse across the polymer coating layer, leading to chemical oxidation of sulfur or selenium atoms on the QD surface. This "etching" process first generates lattice structural defects (which cause fluorescence quenching) and then produces soluble metal (e.g., cadmium and zinc) and chalcogenide (e.g., sulfur and selenium) species. We also find that significant fluorescence quenching occurs before QD dissolution and that localized surface defects can be repaired or "annealed" by UV light illumination. These results have important implications regarding the long-term fate and potential toxicity of semiconductor nanocrystals in vivo.  相似文献   

12.
Synchrotron diffraction with a micrometer-sized X-ray beam permits the efficient characterization of micrometer-sized samples, even in time-resolved experiments, which is important because often the amount of sample available is small and/or the sample is expensive. In this context, we will present acoustic levitation as a useful sample handling method for small solid and liquid samples, which are suspended in a gaseous environment (air) by means of a stationary ultrasonic field. A study of agglomeration and crystallization processes in situ was performed by continuously increasing the concentration of the samples by evaporating the solvent. Absorption and contamination processes on the sample container walls were suppressed strongly by this procedure, and parasitic scattering such as that observed when using glass capillaries was also absent. The samples investigated were either dissolved or dispersed in water droplets with diameters in the range of 1 micrometer to 2 millimeters. Initial results from time-resolved synchrotron small- and wide-angle X-ray scattering measurements of ascorbic acid, acetylsalicylic acid, apoferritin, and colloidal gold are presented.  相似文献   

13.
In the natural environment humic substances (HS) represent a major factor determining the speciation of metal ions, e.g., in the context of radionuclide migration. Here, due to their intrinsic sensitivity and selectivity, spectroscopic methods are often applied, requiring a fundamental understanding of the photophysical processes present in such HS-metal complexes. Complexes with different metal ions were studied using 2-hydroxybenzoic acid (2HB) as a model compound representing an important part of the chelating substructures in HS. In flash photolysis experiments under direct excitation of 2HB in the absence and the presence of different lanthanide ions, the generation and the decay of the 2HB triplet state, of the phenoxy radical, and of the solvated electron were monitored. Depending on the lanthanide ion different intracomplex processes were observed for these transient species including energy migration to and photoreduction of the lanthanide ion. The complexity of the intracomplex photophysical processes even for small molecules such as 2HB underlines the necessity to step-by-step approach the photochemical reactivity of HS by using suitable model compounds.  相似文献   

14.
B ions represent an important type of fragment ions derived from protonated peptides by cleavage of an amide bond with N-terminal charge retention. Such species have also been discussed as key intermediates during cyclic peptide fragmentation. Detailed structural information on such ion types can facilitate the interpretation of multiple step fragmentations such as the formation of inner chain fragments from linear peptides or the fragmentation of cyclic peptides. The structure of different b2 ion isomers was investigated with collision-induced dissociations (CID) in combination with hydrogen/deuterium (H/D) exchange of the acidic protons. Special care was taken to investigate fragment ions derived from pure gas-phase processes. Structures deduced from the results of the CID analysis were compared with structures predicted on the basis of quantum chemical density functional theory (DFT) calculations to be most stable. The results pointed to different types of structures for b2 ion isomers of complementary amino acid sequences. Either the protonated oxazolone structure or the N-terminally protonated immonium ion structure were proposed on the basis of the CID results and the DFT calculations. In addition, the analysis of different selectively N-alkylated peptide analogs revealed mechanistic details of the processes generating b ions.  相似文献   

15.
The variety of interactions have been analyzed in numerous studies. They are often compared with the hydrogen bond that is crucial in numerous chemical and biological processes. One can mention such interactions as the halogen bond, pnicogen bond, and others that may be classified as σ-hole bonds. However, not only σ-holes may act as Lewis acid centers. Numerous species are characterized by the occurrence of π-holes, which also may play a role of the electron acceptor. The situation is complicated since numerous interactions, such as the pnicogen bond or the chalcogen bond, for example, may be classified as a σ-hole bond or π-hole bond; it ultimately depends on the configuration at the Lewis acid centre. The disadvantage of classifications of interactions is also connected with their names, derived from the names of groups such as halogen and tetrel bonds or from single elements such as hydrogen and carbon bonds. The chaos is aggravated by the properties of elements. For example, a hydrogen atom can act as the Lewis acid or as the Lewis base site if it is positively or negatively charged, respectively. Hence names of the corresponding interactions occur in literature, namely hydrogen bonds and hydride bonds. There are other numerous disadvantages connected with classifications and names of interactions; these are discussed in this study. Several studies show that the majority of interactions are ruled by the same mechanisms related to the electron charge shifts, and that the occurrence of numerous interactions leads to specific changes in geometries of interacting species. These changes follow the rules of the valence-shell electron-pair repulsion model (VSEPR). That is why the simple classification of interactions based on VSEPR is proposed here. This classification is still open since numerous processes and interactions not discussed in this study may be included within it.  相似文献   

16.
The fragmentation of primary alkoxyl radicals has been scarcely used in synthesis since other competing processes (such as oxidation or hydrogen abstraction) usually predominate. However, when serine derivatives were used as substrates, the scission took place in excellent yields. Tandem scission-allylation, -alkylation, or -arylation reactions were subsequently developed. This one-pot methodology was applied to the synthesis of unnatural amino acids, which are useful synthetic blocks or amino acid surrogates in peptidomimetics.  相似文献   

17.
Our objectives were to develop catalytic atom-economic processes accessing and/or incorporating versatile functionality using aryl/heteroaryl acetonitriles as substrates. We report essentially solvent-free [Cp*IrCl2]2 catalyzed redox neutral processes whereby substituted acetonitriles react with primary alcohols to deliver monosubstituted aryl/heteroaryl acetonitriles in excellent yield. We further demonstrate that such processes can be achieved by conventional or microwave heating and that bis- and tris-primary alcohols are also processed efficiently.  相似文献   

18.
Physical solvents such as ethylene glycol (EG), diethylene glycol (DEG), and triethylene glycol (TEG) are commonly used in wet gas dehydration processes with TEG being the most popular due to ease of regeneration and low solvent losses. Unfortunately, TEG absorbs significantly more hydrocarbons and acid gases than EG or DEG. Quantifying this amount of absorption is therefore critical in order to minimize hydrocarbon losses or to optimize hydrocarbon recovery depending on the objective of the process. In this article, a new correlation that fully covers the operating ranges of TEG dehydration units is developed in order to determine the solubility of light alkanes and acid gases in TEG solvent. The influence of several parameters on hydrocarbon and acid gas solubility including temperature, pressure, and solvent content is also examined.  相似文献   

19.
Enantiomerically pure N,N-dibenzyl-alpha-amino aldehydes reacted with (chloromethyl)lithium, generated in situ from bromochloromethane and lithium metal, to give predominantly erythro aminoalkyl epoxides. Treatment of the crude epoxides with aqueous hydrochloric acid gave crystalline (2S,3S)-N,N-dibenzylamino chlorohydrin hydrochlorides in 32-56% overall yield and high isomeric purity. These compounds are versatile synthetic intermediates for the preparation of hydroxyethylamine-based HIV protease inhibitors, either directly as such, or via conversion to the corresponding N-Boc-(2S,3S)-aminoalkyl epoxides. The processes described do not make use of hazardous reagents or intermediates, do not require chromatographic purifications, and are thus amenable to the preparation of large quantities of these versatile building blocks.  相似文献   

20.
Titanium dioxide is a widely used photocatalyst whose properties can be modified by fluoride adsorption. This work is focused on the effect of surface fluorination on the electrochemical and photoelectrocatalytic properties of TiO(2) nanoporous thin films. Surface fluorination was achieved by simple addition of HF to the working solution (pH 3.5). Open circuit potential as well as ex situ XPS measurements verify that surface modification takes place. Fluorination triggers a significant capacitance increase in the accumulation potential region, as revealed by dark voltammetric measurements for all the TiO(2) samples studied. The photoelectrocatalytic properties (measured as photocurrents under white light illumination) depend on the substrate being oxidized and, in some cases, on the nature of the TiO(2) sample. In particular, the results obtained for electrodes prepared with a mixed phase (rutile + anatase) commercial nanopowder (PI-KEM) indicate that the processes mediated by surface trapped holes, such as the photooxidation of water or methanol, are accelerated while those occurring by direct hole capture from the adsorbed state (formic acid) are retarded. The photooxidation of catechol and phenol is also enhanced upon fluorination. In such a case, the effect can be rationalized on the basis of a diminished recombination and a surface displacement of both the oxidizable organic substrates and the poisoning species formed as a result of the organics oxidation. Photoelectrochemical and in situ infrared spectroscopic measurements support these ideas. In a more general vein, the results pave the way toward a better understanding of the photocatalysis phenomena, unravelling the importance of the reactant adsorption processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号