首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A dielectric-loaded, ridged helical groove slow-wave structure for the millimeter wave traveling wave tube is presented in this paper. The effects of the groove depth, ridge dimensions and the dielectric permitivety on the wave propagating properties and the interaction impedance are investigated in detail. From the analysis, it is indicated that for broader band amplification in a helical groove travelling wave tube, a ridged helical structure with shallow groove and loaded by dielectric with proper relative permitivety may be applied.  相似文献   

2.
In millimeter wave range, high-power traveling wave tube (TWT) is a key device with broadband and high-power amplification. Basis of comparing traditional and new type slow wave circuits for high-power TWT in MMW, analysis and computation of propagating and RF performance for folded wave circuit are carried out. Theoretic calculation and experimental test show that folded wave circuit is an ideal slow wave structure for broadband and high-power TWT in MMW. There is extreme wide application for the circuit in high-power TWT. This development possesses important consult value to designer for MMW power amplifiers.  相似文献   

3.
Folded waveguide circuit (FWC) is an ideal slow wave structure for broadband power traveling wave tube (TWT) in millimeter wave. But owing to changes of propagating character by reflecting of waveguide bend and electron beam hole, stopband can be formed. On the basis of computation of the stopband, effects of the dimension of FWC on stopband width are analyzed. It is available for design in FWC TWT.  相似文献   

4.
脊加载螺旋槽行波管的小信号增益计算   总被引:2,自引:0,他引:2       下载免费PDF全文
脊加载螺旋槽行波管是一类新型毫米波大功率器件,给出了此结构中引入电子注后的“热”色散方程,并利用“牛顿”下山法求解了此复系数超越方程.通过数值计算给出了一个工作电压为20kV频率为474GHz的脊棱加载慢波结构的具体尺寸,并对此结构中小信号增益随脊尺寸的变化情况及电子注参数对其影响进行了研究,计算结果表明:此结构适宜于作为高增益窄带毫米波大功率行波管的慢波线,其3dB增益带宽为34%;为了展宽其工作带宽,可以适当减小间隙宽度,也可在一定范围内提高电子注电流.给出的理论对于研制此类行波管具有一定的指导意 关键词:  相似文献   

5.
An equivalent circuit model of millimeter wave second harmonic oscillator stabilized with a transmission cavity has been proposed for constructing analytical formulations between performance parameters of the oscillator and parameters of the circuit. The model consists of an equivalent circuit of fundamental wave and that of second harmonic wave. Each of the circuits comprises circuit models of main cavity, transmission waveguide, and transmission cavity. Absorbing material placed between the transmission waveguide and the transmission cavity can suppress additional resonances originated from transmission cavity. The behavior of the second harmonic oscillator can be effectively described by the circuit model. Furthermore, based on this model, mechanical tuning characteristics have been studied at first, and then analytical formulas for quality factor and efficiency depending on circuit parameters have been derived. The circuit parameters can be conveniently extracted by electromagnetic field simulation. Hence the formulas exhibit both compact form and enough accuracy. Thereafter, general rules of performance parameters varying with circuit parameters have been deduced for the harmonic oscillators. Then some design considerations have been derived according to the corresponding analysis. The equivalent circuit model is useful for designing and adjusting millimeter wave second harmonic stabilizing oscillator with a transmission cavity.  相似文献   

6.
A millimeter wave phase locked and frequency multiplying source is proposed in this paper. The design includes an X-band phase locked loop (PLL) frequency synthesizer as the base frequency source, and a monolithic millimeter wave frequency tripler, which is developed by using OMMIC 0.18μm pHEMT process. The PLL and the tripler are integrated in a single circuit board to make a low-cost and compact frequency source with the size of 6cm × 5cm. Measurement shows an output power of more than 4.8dBm at the frequency range from 35 to 36.7GHz. A phase noise of about -92dBc/Hz at 100kHz offset is achieved.  相似文献   

7.
In millimeter wave band, interaction impedance and efficiency of the ring-bar circuit are higher than helix. Ring-bar traveling wave tubes (TWTs) do not easy yield backward wave oscillation at high operating voltages. Thus ring-bar TWTs can reach higher power lever. On basic of computation of dispersion and interaction impedance, a fast estimation models of RF parameters for MMW ring-bar TWTs are given in this paper. It is available in designing tube to reduce developing period.  相似文献   

8.
In this paper, a millimeter wave Gunn diode oscillator is analyzed and designed by the finite-difference time-domain (FDTD) method. The design results indicate that the oscillator has an oscillation frequency of 45.0GHz and a higher oscillation voltage. Based on the circuit equations and an integral transform, an improved matrix method is utilized for the oscillator design. This method is also extended to model the hybrid network which is constructed by the high order linear elements and the nonlinear elements with arbitrary connections. The experience shows that the improved FDTD method is stable with the time step length Δt based on the Courant condition. *This work was supported by the National Natural Science Foundation of China.  相似文献   

9.
In this paper, we introduce a new method, support vector regression (SVR) method, to model millimeter wave transitions. SVR is based on the structural risk minimization (SRM) principle, which leads to good generalization ability for regression problem. The SVR model can be electromagnetically developed with a set of training data and testing data which produced by the electromagnetic simulation. Two Ka-band millimeter wave transitions, i.e., waveguide to microstrip transition and coaxial to waveguide adapter, are used as examples to validate the method. Experimental results show that the developed SVR models have a good predictive ability, and they are useful for interactive CAD of millimeter wave transitions.  相似文献   

10.
In this paper, A numerical technique, called short-open calibration (SOC), in conjunction with edge-based finite element method (FEM) is employed to analyze millimeter wave circuit that can be segmented into two distinct section: static model of feedlines and dynamic model of circuit discontinuity. The derivation of reflection coefficient of 3D discontinuities is arranged in two steps. In the first step, this SOC technique is incorporated into the FEM for mesh truncation of computaional domain. In this way, much faster convergence is achieved for large-sparse linear matrix equations from FEM by this termination than by perfectly matching layers (PML). The field distribution of the dominated mode in uniform feedlines and entire circuit is obtained individually by exciting a pair of even and odd impressed voltages along the struture. In step two, Scattering parameters based on the voltages and current defintion is calculated by integral of electric and magnetic fields. Numerical solutions for a class of planar circuit discontuities are very well compared with those published in the available literatures.  相似文献   

11.
Millimeter Wave Passive Detection Simulation System   总被引:3,自引:0,他引:3  
In this paper, millimeter wave Radiometer Dynamic Simulation system (RDS) is presented as a typical pre-verification system. Before designing hardware circuit, we can utilize RDS system to simulate radiometric working orders by presetting its technical parameters and simulation environment. Thus it can improve radiometric validity and accuracy on target detection and pattern recognition. On the basis of discussing radiation characteristic and mathematical model, a system framework was proposed.  相似文献   

12.
In this paper, soliton propagation in nonlinear transmission lines (NLTLs) periodically loaded with symmetric voltage dependent capacitances is studied. From the lumped element equivalent circuit of the line we have analyzed the influence of nonlinear shunt reactances on soliton propagation characteristics. It is shown that by increasing the non linearity of the C–V characteristic, a faster separation of input signal into solitons is achieved. The fact that frequency multiplication in NLTLs is governed by soliton formation makes the results of this work relevant to understand the influence of nonlinear loading devices on multiplier performance. Since a heterostructure barrier varactor (HBV)-like voltage dependent capacitance has been considered for the nonlinear devices, this study can be of interest for the design of millimeter wave frequency multipliers loaded with HBVs.  相似文献   

13.
In millimeter wave band, the folded waveguide circuit exists some advantages such as wide operating frequency band, high mechanism strength, better heat disspation, easy fabrication and lower cost. It is expected that contradictory between broadband and high power in millimeter wave range can be solved by using the folded waveguide circuit. Computational results of dispersion character and coupling impedance of the folded waveguide are given. It is shown that the folded waveguide has wide bandwidth character in millimeter wave band.  相似文献   

14.
When a pulse wave propagates through fog, the effects of distortion, being severer at millimeter wave band, is caused by fog because of its dispersive property. The transfer function of a pulse signal is obtained by the theory of radio wave propagation; the complex envelope is deduced by the solution of Fourier integral. The broadening and compressing effects of a pulse wave are discussed. The variations of distortion effects with pulse-width, propagation distance and visibility of fog are found. As an example, the simulating and calculating results of distortion effects for Gaussian pulse at millimeter wave band are given.  相似文献   

15.
A slow wave structure named Π — line is analysed in this paper. This circuit propagates slow waves in symmetrical and antisymmetrical mode. The dispersion relations of both symmetrical and antisymmetrical modes are derived here, by means of the field matching method. Numerical results are also given in this paper. The Π — line slow wave structure is of large diameter, and its radial supported stubs provide good heat conduction paths. These properties make this circuit well suited for use in high power, millimeter wave traveling wave tubes.  相似文献   

16.
As the operating frequencies of communication systems more higher into the millimeter wave range, and the density of particles in medium is more denser, the effects of multiple scattering in sandstorm become more significant. This paper treats the problems of electromagnetic multiple scattering in strong sandstorm by the Monte Carlo method. Based on the analytical theory of multiple scattering, the millimeter wave propagation and scattering in discrete random media are investigated by means of the particle-tracking technique. The millimeter wave is regarded as a Markov chain of wave particle collisions in a medium in which it is scattered and absorbed. Considering the effect of multiple scattering, millimeter wave attenuation induced by strong sandstorm is simulated numerically. The values of theoretical calculation are in good agreement with the measured results of simulated experiment at 34 and 93 GHz.  相似文献   

17.
The design of nonuniform bilateral finlines on anisotropic substrates for millimeter wave applications is presented. The taper consists of a planar circuit with smooth variation of the slot width profile along the structure. The spectral domain method and Galerkin procedure are combined with the transmission line theory for studying the behavior of tapered bilateral finlines and evaluation of their design parameters. The influence of the substrate anisotropy on the propagation characteristics of these structures is also examined. This technique is general and can be applied to investigate a broad class of planar transmission line tapers.  相似文献   

18.
A new kind of helical groove structure, step-loaded groove waveguide is presented and analyzed in this paper. The dispersion equation of this structure is derived by means of a field-matching method. This equation may be reduced to the dispersion equation of helical ridge-loaded structure and rectangular one. In order to demonstrate the influence of the step on the dispersion properties, the comparison of the dispersion characteristics is made in these helical rectangular and modified rectangular groove structures. Form the analysis, it is shown that the step loading tends to reduce the dispersion of the helical groove circuit and the step-loaded structure has the weaker dispersion compared with the rectangular one or the ridge-loaded one. The effect of the step shape on the wave properties is also discussed under the deep groove case. The theoretical results explicitly indicate that the V-like step-loaded structure has the weakest dispersion in all step-loaded structures.  相似文献   

19.
A new circuit configuration for millimeter wave varactor-tuned transmission cavity-stabilized oscillator has been proposed in this paper. Compared to conventional varactor-tuned reflection cavity-stabilized oscillator, in this configuration, a high quality factor transmission cavity directly coupled to varactor diode is employed to improve the performances of the oscillator. The operation frequency of this oscillator can be tuned by varying the resonant frequency of the transmission cavity through changing bias voltage of the varactor diode. An equivalent circuit model for the oscillator has been presented in order to theoretically investigate the performance characteristics of the oscillator. On the basis of this model, electrical tuning characteristics have been studied. Mode jumping phenomena during electrical tuning process have been analyzed for obtaining stable operations of the oscillator. The analytical formulae of quality factor and efficiency have been derived in terms of relevant circuit parameters. Particular emphasis has been paid on several circuit parameters which have a substantial impact on circuit performance. Some design considerations have been pointed out according to the simulation results, which are useful to the design and fabrication of this type of oscillators.  相似文献   

20.
The Generalized Transmission Line Equations are employed to analyze the circuit parameters of the microstrip lines. The static distributed capacitances and inductances of non-uniform microstrip lines are extracted. By comparing the differences between the port’s S-parameters respectively obtained by the extracted static circuit parameters using circuit method and by the Method of Moment directly, the applicable frequency range of the extracted static distributed circuit parameters can be found. The results show that the extracted static circuit parameters can be used in a frequency band from DC up to millimeter wave. This work was supported in part by the National Natural Science Foundation of China under grant no. 60471053, and in part by the Program for New Century Excellent Talents in University, MOE, China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号